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A new approach to local Gauge theories is presented. The theory is developed in a curved space-time, and
therefore gravitation is not neglected. Besides the Yang-Mills A, vector bosons associated with a
symmetry group, scalar bosons g, appear just as naturally. The Lagrangian describing the interaction of
these fields is the Ricci scalar for an extended Riemannian geometry.

1. INTRODUCTION

The only strictly nonphenomenological theory phy-
sicists have today is the Einstein theory of gravita-
tion. No potentials nor experimental parameters have
to be introduced. Einstein field equations R,,=0 are
the simplest one can write for a pseudo-Riemanian
geometry.

In this paper an extended pseudo-Riemanian (ERG)
structure based on any semisimple Lie algebra is intro-
duced. This structure is as flexible as ordinary tensor
analysis. The corresponding Einstein’s equations R,
=0 turn out to be a Yang—Mills theory fully coupled to
gravity. The theory is coordinate and gauge invariant.
Besides the usual Yang—Mills vector bosons A a num-
ber of independent scalar bosons make their appearance
naturally.

The most economic way of presenting the ERG is by
using modern differential geometry. This language shall
be used in this introduction to give a short algebraic ac-
count, all topological questions set aside, of the theory
of gravitation. The main reason to do so is that almost
all formulas remain valid for ERG an thus notation is
set straight.

Let M be a four-dimensional differentiable manifold?
called space—time and C (M) the set of all infinitely
differentiable real functions on M. The basic object in
this theory are vector fields denoted by X, Y, Z. X isa
mapping of C (M) into itself with the following
properties:

X(af +Bg)= aXf+ BXg, a, B reals, (1.1
Xfg=(Xfig+f(Xg), figcC (M), (1.2)

Let D(M) be the set of all vector fields. D(M) is turned
into a module over the ring C*(M) by defining X and
X +Y as follows!:

X g-f(Xg)

The Lie product
[X,Y]=XY-YX, 1.4)

where XY stands for a composition of mappings, is also
a vector field. The Lie product satisfies the Jacobi iden-
tity [X, [¥, Z]1+[Y, [2,Xx]]+[Z, [X, Y]]=0. A general
solution of Eqs. (1.1) and (1.2) may be found in any co-
ordinate system of M.! Any X takes the form (Xf)(x*)

= £*(x)of(x)/9x*, where & c C”(M). That is,

X=1t3,. (1.5)
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The £ are the components of X in the partial derivative
basis 9,.

An affine connection is a rule V which assigns to each
X e D(M) a linear mapping V, : D(M) - D(M) satisfying the
following two conditions:

VfX+gY zfvx +gVY’

Vx(fY) =Fvx(Y) + (XNY.

f, g C(), (1.6

These properties define V,Y for all X and Y if VY is
specified for a basis in D(M), that is, if I}, e C*(M),
defined by

V5, (8,)=T},0, (1.7

are given. I";‘,, are the Christoffel symbols for a pseudo-
Riemanian geometry.

The linear space D(M) is provided with a nondegener-
ate metric (X, ¥) ¢ C*(M) with the following properties?:

X, 1) =(Y,X),
(X +gY,Z)=fX, Z) +g(Y, Z),
Z<X7 Y>:<VZX: Y>+<X’ VZY>- (1'9)

Equation (1.9) relates the affine and metric structures;
it is better known by the equivalent statement that the
covariant derivative of the metric g,, = (8,,, d,) vanishes.

(1.8)

The following two expressions are fundamental:

TX,Y)=VyY ~ VX~ [X, Y], (1.10)

(1.11)

T(X,Y) is a vector field with the following linear prop-
erty: T(X +gY, Z)=fT(X,Y) + gT(Y, Z) for any f, g

€ C”(M). The same property holds for variable Z since
T(X,Z)=-T(Z,X). The vector field R(X, ¥)Z has the
same linear property for the variables X, ¥, and Z,
Equations (1.10) and (1.11) are related to the usual tor-
sion and Riemann tensors in component form by the
following expressions:

RX,Y)=VyVp=VyVy= Vix,r1

T(3u, 2,)=T},3)

and (1.12)

R(3,,3,)3,=R3,,9,.

Both T3, and R{,, are expressed entirely in terms of
I},. A pseudo-Riemanian space is defined by T(X, Y)
=0 or T3,=0. In this case the affine connection is en-
tirely determined by the nondegenerate metric through
the following identity':
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2<X: VZY> :Z<X; Y> + Y<X’ Z> _X(Y’ Z>
+<Z; [X: Y]> +<Y: [X7 Z]>" <X; [Y, Z])
(1.13)

derived from (1. 9) and T(X, Y) =0 by cyclic permutation.
When Eq. (1.13) is written for the basis 3,, the usual
Christoffel symbols

rtw :%g)g(gou oW +gou,u — 8 v,p)

are obtained. g)"’ stands for the inverse matrix of g,.

(1.14)

It is now possible to write the Einstein invariant
action

S= [ dx/gR, (1.15)

where g=detg,, and R=g"R},, is the Ricci scalar. The

fields to be varied are seen to be g,, from (1. 14). Upon
variation the field equations R},,=R,, =0 are obtained.

The mathematical apparatus just described may be
thought of as a way of generating fields and field euga-
tions in a natural way.

In the next section the notion of vector fields is gen-
eralized in such a way as to retain most of the apparatus
just described, in particular, the ability to write the
Einstein action (1. 15) invariant under coordinate and
gauge transformations and thus obtain a Yang—Mills
field theory fully coupled to gravity.®

2. EXTENDED RIEMANNIAN GEOMETRY

In this section the notion of a vector field is general-
ized on the basis of any semisimple Lie algebra*® as-
sociated to a group of symmetry. Everything else will
be an exact parallel of ordinary Riemannian geometry.

Let L be a semisimple, finite-dimensional Lie alge-
bra over the reals. L“(M) denotes the set of infinitely
differentiable functions M — L, where M is the space—
time. Differentiability may be defined componentwise.
L=(M) plays here the role of C (M) in the definition of
vector fields given in the Introduction. L“(M) is turned
into a Lie algebra over the ring C*(M) by the following
definitions of 8+ ¢, f6, and [6, ¢]for 6, ¢  L(M) and
feCo(M):

O+ ¢ xt —0(x") + o (x"),
fO:x* = F(x")o(x™),

and

(2.1)

(6, o1 ~[6(x*), p(x*)].
The last bracket denotes the Lie product in L. x* stands

for points (or coordinates) in M.

An extended vector field (EVF) X is defined to be a
simultaneous mapping of the form

X :L™(M) ~ L™(M),

X C™(M) ~ C=(M) @.2)
with the following derivation type properties:

X(6+¢)=X6+Xg, 8, ¢ = L=(M), (2.3)

X(f6) =fX6+ (X1, f,geC™(M), (2.4)

2 J. Math. Phys., Vol. 17, No. 1, January 1976

Xx[6, ¢1=[x86,¢]1+(6, Xo], (2.5)
X(af +B8g) = aXf+BXg, a, B reals, (2.6)
X(fg)=(Xng+Xg. (2.7

Let ED(M) be the set of all vector fields. ED{M) may
in turn be converted into a Lie algebra over the ring
C™(M) by canonical definitions of X + ¥, fX and [X, Y]
=XY -YX for X, Y< EDM).

Let ! be the dimension of L. It shall now be shown
that ED(M) is of dimension ! +4, by exhibiting a natural
basis for ED(M).

Notice that the action of X on differentiable functions
may be expressed as X = £#3, since (2.6) and (2.7) are
the same as (1.1) and (1.2). Any element 6 L*(M) may
be written as

0=7%6,, a=1...l, f*ecC M), (2.8)

where 6, is a basis of L™(M), From Eq. (2.3) and (2. 4)
it follows that

X0=(Xr*)8, +£*X%6;, Xt < C™(M). (2.9

In order to make life simple, the bases 6, are chosen
in such a way as to have constant structure constants,
that is, X(CL;) =0, where the C%; are defined by

[eas GB]ZCZLBQW

It is always possible to have X(C%;) =0 by choosing 6,
to be ! independent constant mappings since X (C;B)

= §3,Ch; for some £. The main reason for choosing
C!, constant is that the mapping X : 8~ X(f*)6, satisfies
all axioms (2, 3)~(2.7) and thus the linear mapping
X:0-7"X% 6, is a derivation of L*(M), that is, X satis-
fies (2.5), as simple verification will show. It is well
known that a derivation of a semisimple Lie algebra is
necessarily inner,! which amounts to the fact that for
each X% there is a ¢ € L™(M) such that X5 6,= (¢, 6, ].
Any extended vector field X takes the form given by

X6=£9,%0, +[0, 8] (2.11)

a,B,y=1...1 (2.10)

when Cq;,, =0. This is a base-dependent expression for
X, and therefore the study of its transformation proper-
ties is most important. A direct computation based on
Eg. (2.11) shows that under the transformation @,

=18 6,[L8 € C*(M)], & and ¢ transform accordingly to

=g

and (2.12)
5 - ¢ + g%GC;eL;IB &u L%,u 95;

where

Lows=ChsCly. (2.13)
L** and g,*® are the inverse matrices of LY and

Zoas - 828 exists because L is semisimple. From Eq.
(2.12) it is seen that the difference ¢, — ¢, 01, ¢4

e L*(M), for a fixed four-vector £, is an invariant.
This implies that, for any four A, ¢ L™(M), Q@=¢ ~ 4,
is an invariant under base transformation. When (2. 11)
is written in terms of the invariant ,

Xo=£(3,0+|A,,8|)+(9, 6]
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is obtained. 3, is a base dependent mapping that carries
the instruction to differentiate componentwise. In order
to simplify notation let / o stand for / o(8) =[%, 8], com-
monly called the Lie derivative with respect to . X
then takes the form

X=8(8, +LA) +La. (2.14)
The transformation law for A, is easily calculated from
Eq. (2.12), the following result,

A, =A, +gCLLE 6, (2.15)

is obtained for the base transformation 8, =1%6,. A, is
arbitrary but cannot be set equal to zero for all bases
because of the transformation law (2. 15). Notice that

3, +L 4, is an invariant element of ED(M) under base
changes in L™(M). The freedom A, shall be used to sim-
plify field equations.

From Eq. (2.14) a natural basis for ED(M) may be de-
fined by

Du:au+LAu, (2.186)

Dy=L,,. (2.17)

D, is the usual “covariant derivative” of local gauge
theories once represented in a vector space. Any ex-
tended vector field X may be expressed in terms of D,
and D, by

X=£D, a=(u, a). (2.18)

Indices a, b, c, - -+ range over the space—time indices
M, Y, A, -+ and the Lie algebra indices «, 8, 7, ++-.
Notice that / 5%, =Q%/,_ . Equation (2.18) may be used
to map C*(M) into C*(M) if

Duf:f,u.: fe C“(M),

and (2.19)

D,f=0
are assumed.
Lie products for the basis D, may be calculated with

the help of [L4,/ 4]1=/ (5 4; to get

[Du: Dv]:va

84

(Dy, Dy 1= AL CLo Dy, (2. 20)
[Duu DB] = C;BDY:

where the following definitions have been used:
A, =AL6,

and (2.21)

? A6
‘Fﬁvag,u. —Aﬁ W +AuAv gﬁ‘

It shall now be shown that the usual gauge transforma-
tions of the Yang—Mills fields A} correspond to base
transformation in ED(M) of a certain kind.

Let us consider the transformations 6« = L%, that
leave the structure constants CJ; invariant. Due to
semi-simplicity of L these transformations are in one-
to-one correspondence with L*(M), that is, for each
L8 there isa ¢ €/ “(M) such that
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e®f,e® =L%0, LEcC (M), (2.22)
where eaeu_e-a = 9m + [¢’ ea] +%[¢; {¢7 ea]]+ R and is
therefore an element of / “(M) when convergent. (Topo-
logical difficulties are ignored.) Li, the adjoint repre-
sentation matrices, obey integrability conditions, as a
consequence of Eq. (2.22), which are derived below. By
differentiating (2. 22) the following is obtained:

¢ ¢ —_y8 Lt ®
[e®es,, 6, ]=L5 2% 6,e°,

and therefore

HyCh, = L5, L3, (2.23)
where
el = H' 6, (2.24)

which when differentiated once again gives the integrabi-
lity condition

H, ,-H,, -HH,Cls=0. (2.25)
The transformation 8, = L36; induces the transforma-
tion D, = L& D, and D, =D, in ED(M) which will be called
gauge transformations. A simple computation based on
Egs. (2.20), (2.23), and (2.25) shows that under a gauge
transformation A7 transforms as follows:

A% =L5'A} +H (2. 26)
and that
Fﬁx}:Lglw uu:Kg,u _‘Zz,v +Z::A-3 gﬁ- (2- 27)

Remember that by definition C% = C%. Equations (2. 26)
and (2. 27) is the reason for the name gauge
transformations.

3. EXTENDED EINSTEIN FIELD EQUATIONS

Fields are introduced through the concepts of affine
connection Vy and metric (X, Y) just as in the Introduc-
tion. Vy is the mapping Vy : ED(M) - ED(M) with prop-
erties (1.6). The metric (X, ¥Y) € C”(M) is nondegenerate
and obeys (1.8) and (1.9). The extended Christoffel sym-
bols are I'Y, defined by

VpolDy)=T%,D,. (3.1)
The metric tensor g, is by definition

& =(Dy, Dy). (3.2)
The structure fields Cg, are given by

(D,, D,]=C%,D,. (3.3

The torsion and Riemann tensors are defined by (1. 10)
and (1.11), and satisfy the same linear properties dis-
cussed in the Introduction. The component form for the
torsion and Riemann tensors are the following:

T(Dzv Db) = Tcach (3- 4)
and

R(D,, D;)D, = R, D;, (3.5)
which in terms of I'S, and C5, read

T =03 =T%=C% (3.6
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and

R, =D (T%,) =D (1) + 0.0 — 2. 1d, - C, 09,

(3.7
The connection between I'}, and g,,, analogous to Eq.
(1.14), is now
% =z [Dagdb + Dygya— Daguw)
7g£d[gaecgb +gbecga] +%Cib9 (3' 8)
where TS, =0 and formula (1. 13) has been used.
The Einstein action for EVF is just
S= [ d*xVgR, 3.9

where g=detg,, and R=g°°R%,. No more invariants lin-
ear in RJ,, can be built from the Riemann tensor because
it satisfies the same symmetry properties (and Bianchi
identities) as the ordinary Riemann tensor. S is a co-
ordinate invariant because */E transforms under coordi-
nate changes just like its counterpart in general relati-
vity. By construction R is invariant under any base
change in ED(M), but Vg is invariant only under those
transformations with determinant +1. Fortunately, the
semisimplicity of L implies that detL? =1, where the
L% are the local adjoint representation matrices of L
defined in Eq. (2.22). That is, S is invariant under
gauge transformations. S appears to be functional of the
fields g, and A7, but this is not quite so because A}
are arbitrary. Sa1d differently, under the base trans-
formation D =D, +ESD,, D,=D,, which leaves the
Lagrangian invariant, may be used to set A =0, or
alternatively g,, =0, because g,, transforms according
to

[ :<5u;5u>:gua +EﬁgBa-

The second condition g,, =0 is preferable because it is
coordinate and gauge invariant. On the other hand, the
condition A} =0 is better in deriving the field equations
by variation of S. The variation shall not be carried out
explicitly since it is the same as in general relativity.
The result is the field equation

R.;=0, (3.10)

where R,, is the Ricci tensor R},

The field equation (3. 10) shall be written out expli-
citly when g,, =0, but before we exhibit the Lagrangian
in terms of the fields g,,, 2.5, and A} under the same
assumption g,, =0. It should be clear that this last con-
dition involves no loss of generality.

Just like in general relativity the Lagrangian VgR of
Eq. (3.9) involves second derivatives in the fields but
these are exact divergences that may be ignored. The
elimination of these terms is rather involved if use is
not made of the following variation identities®:

- (5gbc);a]

6FZb: égda[(égab);c + (6gac);b

and
(3.11)

OR,, = (51‘“ —(8r%.) .

The followmg fully covariant derivatives have been
used:
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Ea;b = Ea,b - Fgaic
and (3.12)
Ea;b = Ea,b + I3, EC’
where ordinary differentiation with respect to group
indices vanish. All other tensors derivatives behave
like derivatives of products of covariant vector fields,

that is, like (£°1,%,),,. After elimination of divergences
the Lagrangian (3. 9) takes the form

=Vg[r§rg” - Iy raugl.

The Christoffel symbols are given in the Appendix. With
the help of them the Lagrangian (3. 13) takes the follow-
ing explicit form:

L :@LE_%\/;;FOLMVF‘&“U_ %‘/E

Velgn g £
1 g g
Vgy 9x* ¥

where the following definitions have been used:

(3.13)

guvgntJ'Bga”ugBMv

7 8Chope +28°% Cho C]

ey y
"ﬁl@{rﬁv} ’

uy

+ (3.14)

8~ detguw
3.15
gY:detgaB’ ( )
and

- AZ(Cgﬂgﬁa + Cgagbﬁ)- (3.186)

The last expression is a covariant derivative for gauge
and coordinate transformations, and corresponds ex-
actly to the representation of D, in the linear space de-
fined by g,s. (3.16) is the rule of minimal coupling for
2,8 commonly used in flat space gauge theories. Indices
are raised or lowered with g,, or g,z according to their
nature. [ , stands for the Einstein Lagrangian,

Baslp —8as,u

A word should be said on the relation between fully
covariant derivatives given by Egs. (3.12) and the co-
ordinate-gauge invariant derivative (3. 16). First of all,
the full covariance of the derivatives (3.12) can be seen
from the identity

VDa(ngb) ={F ot rcb£ )D,

’

(3.17)

derived from rules (1.6) and (3.1). By full covariance
we mean covariance under any base change in ED(M).
The Ricci scalar R is fully invariant. On the other hand,
the really physically relevant transformations are those
induced by coordinate changes and base changes in the
Lie algebra L which correspond to degrees of indeter-
minism introduced in the theory right from the beginning.
If transformations are restricted to coordinate-gauge
transformations, then group indices and space—time
indices do not mix, that is, the £* transform among
themselves without mixing with £ and vice versa. Un-
der this restricted group, quantities like

Fl=8,+T8 (3.18)

or

b=y IR E (3.19)

where & »=0, behave covariantly. Notice that the rela-

tion between (3 12), (3.18), and (3.19) is that the summa-
tion over index “c” of Eq. (3.12) is performed only over
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the group index § in Eq. (3.18) and over a space—time
index in Eq. (3.19). This is what is meant by a “bar”
covariant derivative in this paper. The field equations
(3.10) when spelled out in terms of g,,, A%, and g,z
read

- — pE 1 avgy
0=R,, Rw-—[——@_y Mer

- %gwgaﬁgyalugoslu:

]I - %ngFa)‘u
v

1 ovg
OzRau:%<F;ulv+F&ung—‘/?¥'+%Ffugaelv
_gysgsvlucsba>’
and
1 = v
OZR(!B:% ('-‘/g—( ngaBIV)Iv_F%FauVFg +%CZTC55.,
Y

= C3/Core)-

4. CONCLUSION

The mathematical structure constructed in this paper,
very similar to Einstein’s theory of gravitation, ren-
ders an unambiguous way of associating besides spin-

1 bosons of the Yang~Mills type, spin-0 bosons with
definite transformation properties, with any semi-
simple group of symmetry. The theory is fully coupled
to spin-2 gravitons, and therefore this all happens in
a curved space—time. There is no problem in extend-
ing the formalism so as to include nonsemisimple
groups of the type U(1)X (semisimple) and thus account
for photons in the usual way. Hopefully elementary
bosons could be fit into this scheme. Fermions seem to
have no natural place in this formalism. The spontane-
ous symmetry breaking for the Lagrangian (3. 14) is
currently under study.

Note added in proof. After this work was completed
the author was advised of a paper by R. Kerner, Ann,
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Inst. H. Poincaré 9, 143 (1968), which contains related
ideas.
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APPENDIX

Christoffel symbols defined by equation (3. 8) are
given with all indices lowered by g,, or g,, according
to their nature:

Flu v:{)\: “V};

— L
Flud—rmu —zFaw,

1
Fauv— ZFntuw

ran :%gaﬁlv;
Lous Z%[gaﬂ W +Az(ca76 - CBra]
Tosr :%(Caay + Char + Cras),

_ 1
Lrag=~28as1r

where {A, uv} are the Christoffel symbols of the second
kind built out of g,, only. Bar covariant derivatives
are defined by Eq. (3.18).
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Generalized Kallén-Pauli equation™+
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The Kallén—Pauli (KP) equation in the 2 V particle model was solved. In addition to satisfying all the
requirements of the integral equation, this solution is found to be reducing to that of the ordinary KP
equation. Unlike earlier authors, we found that there is a resonance in the V8 sector also. The solution
given here shows that the deductive method used in the case of the ordinary KP equation does not hold
good in the present case. The uniqueness of the solution is yet to be proved.

PACS numbers: 11.10.

I. INTRODUCTION

An equation similar to the ordinary Killén—Pauli
equation can be obtained in the case of the Lee model
with two V particles. This generalized KP equation
was solved by many authors. !~ The solution obtained
in Ref. 1 was shown by the author of Ref. 2 to be in-
adequate. Following the procedure of Ref. 2, the authors
of Ref. 3 obtained a solution and applied it to the study
of overlapping resonances in three-particle final states.

We have noted that the solutions of the GKP found in
Rets, 1, 2, and 3 do not reduce to the solution of the
ordinary KP equation when either of the interaction con-
stants in the model is set equal to zero. This certainly
implies the solution obtained in Ref. 3 is wrong.

In the present work we have applied a method used in
Ref. 4. The deductive method applied in Ref. 5 and
others®=? did not yield the correct solution,

In Ref, 3 the constant B [see Eq. (18)] is not handled
properly, Hence we gave the steps leading to it elabo-
rately. The solution found here correctly reduces to
that of the ordinary KP equation. For completeness we
have also given here the N0 sector as well, Because of
the very nature of the method, the uniqueness cannot be
decided until and unless the unitarity is proved. We
have not yet been able to prove the unitarity in the gen-
eral case here.

In Secs. II and IO we give the model and the N6 sec-
tor. In Secs. IV, V, and VI the GKP equation and its
solution are given. In Secs. VII and VIII the V6 scatter-
ing amplitude and the N86 production amplitude are
evaluated, In IX we examine the question of uniqueness
by means of the unitarity at the resonance energy in
the N6 sector.

II. THE MODEL

In this model there are two V particles. Because of
the introduction of a second V particle, there will be a
two-particle resonance in the N6 sector. Both the V
particles are subjected to the elementary interactions
Vi= N6 and V, = N6, Here we choose the parameters
such that only one of the V particles is stable. The mod-
el is described by the following Hamiltonian:

2
H=Z\1 m,ViVi+myN*N+2J waia,
= K

+T E -(E—Q_)i/—”f g V}'Na,(

i=1 K
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1 (wy) +
+§? 2w Q)i??giviwak’ (1)

where w?=p +K2, i being the mass of the 9§ particle.

In (1) m, and m, are the bare masses of V; and V,, With-
out loss of generality we can set the mass of the N-
particle m y equal to zero. The coupling constants g; and
g, are real, It is apparent from the Hamiltonian that the
V and N particles are taken to be static and the 6 parti-
cle obeys a relativistic energy-momentum relation, The
cutoff function #(w) is so chosen as to make all the
relevant integrals finite, and also so as not to allow

any ghost states. The equal time commutators obeyed
by the field operators are

lag,at)=6k -k,

[Ve, Vil=[Va, V51=[N,N*]=1. )

All other commutators between the field operators
vanish. Moreover, if one wishes, for the V’s and N
particle, anticommutators can be taken.

1. N6 SECTOR

The lowest sector is spanned by the physical | V)
particle state and the N6 scattering states. We choose
the stable | V) particle state to have a mass equal to
zero. This restriction does not give rise to any special
etfects. The physical | V) state can be written as a
linear combination of the bare states of the sector,
and so we get

V)=,V 0)+ by |0+ 2 1w )N @] 0). (3)
From the Schrddinger equation

H|V)=E|V) (4)
we find that

01(w) == (018, + G gr)u(w)/ (2wR)! ¥ (w - E) (5)

and we define
H{(E) = (E ~ m)(E = my) + [ gH(E - my) +g5(E = m,)]
><__1___ ® ket (w) dw
472 , (W-E)

Equation (6) is the definition of Hy(E). In the present
case we take the eigenvalue E to be zero. From Eq. (4)
we obtain H,(0) =0, and this condition reduces (6) to

(6)

2 2 \-1
(.& +£z> _1,), ™
ny My
where
Copyright © 1976 American Institute of Physics 6



1 ® xu?

The normalization of the physical | V) state restricts

that
2 2 2 2 o 2
2 (%f;mt +g2_zz/§ mz) 1 f Ku gw)
(a1g1+a2g2) —(g Wy +g mZ) +Eﬁ . w

as can be easily verified,

dw,

9)

We also define a function G(w) by the relation,

Hl(w +if)
21w —my) +g5(w = my)

Gw +ie) =

_w-m=rmy) 1 f k)
(g%'*'g%)(w_wc) 4‘"2 n w' - w-1ie ’
(10)
where, of course, we need that
G(0)=0.
In (10)
wc=(g21m2+g§m1)/(g§+g§). (11)

From Eq. (11) one notices immediately that
we=m; wheng}=0

and (12)
we=m, when g5=0.

Subtracting G(0) from G{w) of (10) yields

G(w +1i€) = wh(w +1¢),

(13)
where
L wow = (my +my)we + mymy
h(w +1i€) =
@)= T ool - )
1 (7 _wdw) .,
+ 4H2L D@ — 079 dw’. (14)

Using (14), we can define a renormalized charge. We
take from (14) that

10y=1/¢g2 (15)

We can easily show that right-hand side of Eq. (15) is
identical to Eq. (9). Thus we find that

(16)

For later convenience we rewrite (14) as k(w +i¢) +1/g?
— %(0}, and this gives

g2 = (a8 + a8y

N g'Bw  gw [ k'ui(w’) ,)
h(w+ze)—g2 (1_wc—w+41r2 L dw’),
(17)
where in (17) we have
B= ws - (my+mp)we + mymy (18)

(g +ghwl

It may be noted from (18) that B =0 whenever either
g5=0 or g5=0. In other words, the pole term in (17)
vanishes when either of the interaction constants is
switched off. In what follows we always take w  less
than u or very near u and w. cannot be taken equal to
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zero, since then B will be infinite, This is because of
our choice of the physical mass of the | V) particle to
be zero. Hereafter, whenever we say that B is zero,
we mean either of the interaction constants in (1) is set
equal to zero. In Ref. 3, it is pointed out that B> 0,
(see Appendix B there). If this restriction is imposed,
we cannot, in fact, reduce our results to the one-
particle case. Their restriction on B is unnecessary.

Whenever we refer to the functions #(w) and G(w), we
mean Egs. (17) and (13), respectively. From Eq. (17)
one immediately notes that whenever B is zero the func-
tion in Eq. (17) will be identical to a similar function in
the ordinary KP equation but for a numerical multipli-
cative factor.

We immediately find from Egs. (13) and (17) that

Im[G(w +i€)] = 6 (w)(d7) ke (w) (19)

and

Im[k(w +i€)] = 8(w) (dmw) ke (w) (20)

The N@ scattering matrix in the 2V-particle case can
be found out from earlier works, However, to acquaint
the reader with our notation, we give here a brief deri-
vation of the amplitude. For what follows it will be
convenient to set

flw)=u(w)/(2a)!/%, (21)
In the continuum we have
|N6y =ay N*[0) +8,() Vi | 0) + By (k) V2| 0)
+ [ alkg, k")apN*|0)d%’, {22)
while the Schrddinger equation
H| N6 = w, | Noi2)
gives
Bi{ry) =81 flwgHwy = my)[ Hy{wy +1€) ], {23)
Ba(Kg) =& Flwq) (wy — my) [ Hy(wy +i€) ], (24)
and
ar(k, ko) = é‘% [Glwy+ia)]. (25)
The N8 scattering amplitude is defined by
(NGt | NO) = Syg
=5{K —K) +2miB(w - wy) Ty (wy). (26)
The T matrix, in (26), is given by
Ti{wy) == FHw [ Glw, +1€) ] 27

From Eq. (27) we notice that there is a resonance in
the N sector for values of wy around w.

IV. Vo SECTOR

For the scattering of a 6 particle on a V particle we
want an eigenstate of the total Hamiltonian of the form
|vee) =a; [V +[x*) (28)
with
H|VOE) =w,| Vo). (29)

1 V) denotes the stationary eigenstate of the total Hamil-
tonian describing a physical V particle of mass zero and
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Ix*Y = [ 91k | V180 @k + [ (k' k)| V,6,.) dk?

v [ by’ k” k)| N8By Aok @i (30)
with outgoing waves only in ¢, i, and ;.
The Schrédinger eigenvalue equation gives
(wo -—w- ’711)21)1 (K9K0)
=B de) oo [ e i, 61
(wo - W~ My) Yy (K’Ko)
=8B o [t ka2
and
2(wy - w = w3k, k7, k)
=g i [ F@)dy k', ko) + () (ko))
+ 82l fl)Pa ', ko) + (W) (k)] (33)
By comparing (29) and (30) we find that
byl eg) = E=E =) ), (34)

g1(wg — w —~my)

After a little algebra we obtain from (34} and (31)

By =) = g
- —ggflw)f(w) _ (w)w)
w W' - wy+w - i€
Kk’ ko)
(__wloﬁx_'f_wf_@ [gHwo— 0’ = my) + g(wy— w’ = my)]dPk".
35)
Let
_ 881 flwy)f(w)(wy - @ — ma)p k', Ko)
Wbk oy w-mp) rellwy-w—my - OO
Inserting (36) into (35), we obtain
Glwy— w)p (K, Kg) ==~ 1 -—f ff(w’) e XO.) ak’, (37
w W' - wy+w -7
Doing the angular integrals, we find
Glw) - w)p(w, wg)
L e eeed s o

where in arriving at (38) we have assumed that ¢ (x, &)
is independent of the vectors. Let

b (w, w) == Mw, wy)/w(wy - w). (39)
We find for (38),
hwy = w)M(w, wy)
[&) ® Im[h(w’)] M((‘”’w ) ’
=1+_1'r ,/u (W'~ wg = %) (w'—w0+w°-1'£) dw’. (40)

Equation (40) is what we call the generalized KP equa-
tion. One immediately notices that (40) reduces to the
usual KP equation when B =0. The function M(w, w;)
vanishes for w=w;~ w,. This is because the function
M(w, w,) is proportional to 2"} (w,~ w). [See Eq. (40).]
The function 27} (w,~ w) has a zero at w =wy - we. [See
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Eq. (47).] Obviously ¢(w, w,) also will be zero {or
w=wy—we. This is an extra condition that the GKP
equation has to satisfy.

V. SOLUTION OF THE INTEGRAL EQUATION

Before solving the integral equation, we define cer-
tain functions which we need later.

We take
Gi(w) = (weo— w)Gw +ie) (41)
and
hi{w) = (we — wh(w +7e). (42)

From (42) one immediately notes that &,(w) does not
have a pole at w.=w unlike 2{w). Also we find that

1 g1 / * 1 dw’
Gi(w) wew Y . ImGl(w’) w'—w=-7e (43)
Since Gjl(w) has a pole at w =0 and
d
o [G1(@)]yeo = _g?c s (44)

the relation in (43} can be verified by doing the integral
as a contour integral. Multiplying Eq. {43) by w, one
obtains

1 2w f N 1 dw’

hlw)  we " w ), Im Gi{w’) w'~w=—ie " (45)
In (45), if we write (w,- w) for w, we obtain

1 :_5i+(wo—w)/ Im 1 dw _
h(wy-w) ¢ T . Gi(w') w' = wy+w—1e

(46)

From the relation (46) we easily find that
1 = ({we = wy +w)
hlwg~w) € “o

2 - = ’
x(g_+<cv_o_w)/ I 4 )
We T . Gw") w' - wy+w— i€
(47)

In order to solve the integral equation (40), one
might be tempted to use (47) and follow the procedure of
Ref. 4. But this procedure cannot give the correct solu-
tion for the simple reason the relation (47) does not
reduce at all to a similar relation of the one V-particle
equation whenever B is made zero. In other words
although the function #(w) reduces to a similar function
of one V particle whenever B is zero, the function {w)
does not reduce to the inverse of a similar function of
one V particle whenever B is zero (see Appendix C).
Therefore, if we solve the integral equation (40) with the
help of Eq. (47), the solution so obtained will not reduce
to the one V-particle solution whenever B is made zero.
Since the integral equation itself reduces to the ordinary
KP equation whenever B is zero, we certainly require
that the solution also must be reducible to the solution
of the ordinary KP equation, whenever B is zero.

In order to find a solution which reduces to the
ordinary KP solution whenever B is zero, we need an-
other representation for the inverse of Z{w). To this
end we define a function g(w), where

Cvavb Chandra Raju 8



B
G @) =h(w) + (wcf _

w)
1 2w f *

s (1 %? .

The function given in (48) differs from %(w) of Eq.
(17) in that it does not have the pole term. Moreover,

whenever B is zero, g% (w) will be indentical to the

function Gp(w) used in Refs. 4 and 5 and others if g
is taken as the renormalized coupling constant. But g

in (48) is as defined in Eq. (16). We define another
function K(w), where

" (w’) dw’ ) 48)

w2 (w! = w - i€)

K(w)= wg(w). (49)
From (48) and (49) we note that

G(0)=r(0)=1/g? (50)

K(0)=0, {51)
and

Im( (w +1€) = (47w) ke (w) = Im[k(w +i€)]. (52)

We also find easily that,
1 5 (wy-w) ” 1 dw’
Glwy~w) &ty . ImK(w')w’—w0+w—ie :
(53)

This relation follows directly from Ref. 4. From Eq.
(48), we immediately find

G@)/h(w)=1+Bw/hy(w). (54)

In passing we also note that k(w) and g(w) both tend to
two different but related constants as w —~ «, In what
follows we do not need these representations, anyway.

In order to solve Eq. (38), we can define, say,
M(w, wy) =[G (wy - w)/h(w, - w)IN(w, wy)
and insert it into Eq. (40) and solve for N(w, w,) and
from the latter we can find M(w, w,). But here we follow
an equivalent and simpler procedure. To this end we
write (40) using (48), as
G (wy - w)M(w, wy)

_ (w0 = 0)BM(w, wy)

(e~ wy+w) +1
w (7 Imlh(w)] Mw’,w)dw
A s (W' = wy - i) (W —w,+w — i) (55)

and solve Eq. (55) by following a procedure similar to
that of Ref. 4. Dividing through by g(wo—- w), we obtain

_ {wg— w)BM(w, wg) 1
M, @)= 752 B0+ @) G 0= @) * Ty )
% Im[2(w’)] M(w', w,) dw'
X<1 T @ —wy—1ie) (W' ~w, +(:.u - ie)) - (56)

Following Ref. 4 closely, the quantity inside the braces
divided by ¢ (w, — w) can be written at once as

(wo-w)f ” 1 dw’X(w’, wpy)
C - =7 2

1wo) + 7 . ImK(o.)’) (w’ ~ wy +w ~ g€) ?
where

X(w', wg) =1 +G*(w

(67)

NM(w’, w,)
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_[__"_]_ M( " we)dw”

, W —wy—
Im h(w”) ”
f Il v, wyder. (58)

While arriving at the second term in (58), we made use
of the relation (52). In (57) C;(w,) is a constant function
of w, and w, and is given by

Culug) -+ 2o f © Tmllte)]

7 w{w’ - wy)

M(w’, wy) dw’. (59)

We have to make a judicious choice for X(w’, wy) from
among the functions that have occured in the theory. The
possible candidates for the dimensionless function

X(w’, wy) are

w,), CZ(wO gg ;
and Cz(wo)%(‘w— G Hwo - ")

Co(wo)h™Hwy - Hwy = w’),

Cz(wo)g-i(wo— w'),

(60)

since each one of them reduces to a similar choice made
in Ref. 4 apart from satisfying the requirements here.
For each choice we have to examine the unitarity, and
then decide one from among the choices in (60). But
the unitarity here is not as simple as in Ref. 10. We
have not been able to prove unitarity in this model.
Nevertheless, for w, slightly greater than y and less
than 24 we have been able to show that the unitarity
holds good only for the first two choices in (60). The
results for the second choice in (60) are given in
Appendix A. Here we consider only the first choice.

So we take for (57)

(wo - w)f ” 1 dw’ 1
Ci1+6 i R ImK(w’) (W' = wy+w—1€) hlwy - w’)’
(61)
Inserting Eq. (61) into (56), we obtain
_ (wy — w)BM(w, wp)
Mw,wy) = -y + @) G {0y~ ) +C = Cylwy = w)(wy ~ w),
(62)
where
17 1 1 dw’
wy-w)= m /u ImK(w’) hlwy- w’) (W' —we+w=—1e) *
(63)

Rearranging (62) and using (48), we immediately ob-
tain the solution of our integral equation (40) as

g(wO [c ( W,

M(w, w) = h(w ~ o)

- W)Col(wy-w)].  (64)

The solution given in (64) satisfies all the conditions
discussed below Eq. (40). The factor before the
parenthesis simply cancels out when B=0,

VI. EVALUATION OF THE CONSTANTS

The solution given in (64) will be complete if we can
determine the constants C; and C,. We follow a differ-
ent procedure to that of Ref. 4 in evaluating these con-

Cvavb Chandra Raju 9



stants. In order to determine the two constants C; and
Cy, we need two equations connecting them, To this
end we evaluate M(0) and M(w,) from (40) and then

from (64). We have from (40) and (64).
_ g(wo) -

M(0) = h(wo) 7(@y) (Cy = wyCyA,), (65)

where
_1 f Tl 1 :

Ao_n ) ImK(w') Clay —a7) dw’. (66)
From Eq. (65) we obtain

Clgo_ CzKvozl’ 67)
where in (67) and hereafter we write for simplicity

Glw) =G, Klwy)=K,, and h(wg) =k (68)

Inserting (64) into (40) and then taking w =w,, we find
(o _@f T _Imlk@)] G-l o,
g2_1+ci7r . W= wy-ie) hwy~w’) dw

o9 ” Im[A(w”)]G (wo = w')
Y W (W = wy— 1) (wy — w’)

X (wy - w{wy — w)dw’. (69)

The integrals in (69) can be easily computed by con-
tour integration. The same method applies in Ref. 4
also (see Appendix D). But here in (69) the function
h(w’) has a pole at w.. As in dispersion theory we ex-
clude w by a cross cut from the infinite circle. If this
is not done, both the constants C; and C, attain an inde-
terminate form for w;=w for any value of w,. With this
in mind, we evaluate the integrals as contour integrals.
The very first integral in (69) is given by

) Glwy-2)
z(z = wy) hlwy= 2)

Cywy 2 Res
voles of 21 (zuw )1

:Cic;JO(ZZL - go —).

Wy hygiwy

The second integral in (69), by using (63) and inter-
changing the orders of integration, can be written as

Cow ” 1\ dw”
'T(’/u Im( o) oy — ~)
1 ° h(w g(“-’O" r
x;[u (u) —wy+w Mi(w, ’) (71)

and the very last integral in (71) can be done by residue
method and we have

l[ Im[h(w’)] dw’ G (wy —
T “(w’—ie)(w’—wo-rw”—z'e) wy~ w’)

h(2) G (wo— 2)

= 2 Res
voles of z'l—(/z-woafw")'l z(2 — wy +w"h{w, - 2)
_1G0 1 k=) Gw") 72)

T g? By (0" - wy) * (wo=w”) R(w”)"
Inserting (72) into (71) and using (66) and (49), we obtain
for (71)

C,K, e
—22"A°+c25"—° Im—2 1
gh, T

G (@) (73)

Kw') w' - wy,—ie hlw') -~

The very last integral can be again obtained by re-
sidue method. Thus
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1/ 1 Gw) dw’
- I - L _ O
TJ, mK(cu’) hw) (W'-w,—i€) K, I, w,’ (74)

Collecting all the results, we obtain for (69)

-
) K,
0:1+C1<ho— L ——1—>+C2< orko i —g2>.

N g, T,

(75)

Now with the help of (75) and (67) it is a simple matter
to determine the constants C; and C,. We find,

<0Aog - go G —%>

hy g Y, I,
(e g - 9]

(76)
and

C2:<90+ho+

g, K G\ -t
Zo 1 oo - 2 _Za
hog? g2>( g? KOA(JLOﬁL(jo'(’r T

(17)

The expression given in (76) could be simplified still
further. But we leave it like that so that one can easily
see how it reduces to a similar expression of the or-
dinary KP equation. The constants C; and C, also re-
duce to D, and D, of the ordinary KP equation when-
ever B is zero (compare with Appendix C).

VII. V6 S MATRIX

The V6 scattering matrix can be computed. We use
the definitions
Sye=( V62| Vo) =8k — ko) +276(w — wo) T(wo);  (78)
one easily finds from Ref. 4 that
T(wg) = (w)M (W, wy)/w,.

From Egs. (64) and (76) we obtain
( f (wy) 1/(4’0

=f*(wy) (KOAogo

Kvo C -1

x k{o<_g'2_ =KAol +g290" a)] ,

where f(w,) is as defined in Eq. (21).

(79)

ogo 22 Gy~ go)

(80)

To show that K, is also present in the N6 scattering

amplitude Sy,, we write Eq. (27), using Eqs. (49) and
(54), and obtain
Ty(wy) == [ FHwe/ K N[ + Bwy/hy(wg)]. (81)

VIil. THE PRODUCTION AMPLITUDE

The production amplitude V8, —~ N6;0, can be easily
computed from ¥;(wy, wy, w,) of Eq. (33). We find

P(wy, wy, wg) = 2(5{(wo)f(w2]2f&,);e))
M(wi, wo) | M{ws, wy)
x<w1(w0 ~ @) wg(wy— w2)> . (82)

The production amplitude P defined by
Sproq = (NG, 68| VOINY = 27 6(w; + wy — wy) Pwy, w,)
is given by the term containing the 6(w; + wy = wy) in

Pa(wy, wg, wy) of (82). Substituting wy =w, - w;, we find
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p - ZW)f(w =~ wi)fwi)

wi(@, — @;) [M(w1)+M(w0— w,)] (83)
_ gf(wo)f(wo = wi)f(w1)Ca , &fwo)f(wo - w1)f(w1)
G(wy— w)G(wy) wGlwy — wy)
X (1 + g C, — Cog?). (84)

Equation (84) is obtained by using the results of
Appendix B. In Eq. (84) the constants C; and C, are as
given in Eqs. (76) and (77). Whenever B is zero, the
second term in (84) simply vanishes and the result again
reduces to that of one particle case. The simplicity of
this result should be noted.

IX. UNIQUENESS

In order to decide the uniqueness of the solution, one
has to prove the unitarity. We have not been able to
prove the unitarity. But still we can do one thing, We
let w. take values slightly greater than u but less than
2. That is, let wo=p +€, where € is a small positive
constant but not equal to zero and is less than u, We
now take w;=w¢. Under these circumstances there will
be no production amplitude and the unitarity relation in
the V0 sector reduces to the elastic unitarity relation.
But for w,=w,, we tind from (76) and (77)

C,=0 and C,=-1/KA, (85)
and the unitarity is trivially satisfied.

For any other choice of X(w’, w,) in (60) other than
the second choice, the unitarity fails for wy=w,. That
is the reason we have ruled out all other choices in
(60).

Still the second choice as discussed in Appendix A
also satisfies the unitarity for w;=w, and C; and C,
have the same values as in (85). Therefore, to decide
the uniqueness, one has to prove the unitarity in the
general case.

X. DISCUSSION

Our solution satisfies all the requirements of the
integral equation and is the only solution (known to the
author) which reduces to the single V-particle case
whenever either of the interaction constants is switched
off,

As in the N@ sector, there is a resonance in the V¢
sector also. Until and unless the unitarity is proved, it
is dangerous to apply the model to a study of other
mechanisms, such as Pierel’s mechanism,
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APPENDIX A

If we take

X(w’, wp) = c'g(“’) 1 ) (A1)

R(w') R(wy—w’

and insert into (62), we obtain

1 J. Math. Phys., Vol. 17, No. 1, January 1976

M (w, wy) = %(:‘2%3; X{Cf - Ci(wy— W'y - w)], (A2)
where

, e 1 1

I'(wy— w)=— TT'/.u ImK(w’) (w, — @)

hw)(w'— wy+w=1d€) °

Following a similar procedure as in the text, we find

EofoGg 90

<Kvog0 e e 2Go )

Gi-
[ 0( —K0A0h0+g2 Go— )] . (Ad)
and
Go 1
ci-(Goeh g 2)
2\t
(—"ﬁ’ ~KoAgho+8° Go = %—%) . (A5)
One immediately verifies that C; =0 for w,=w; and
Co=~ I/KDAOJ
APPENDIX B
Using Eq. (64) in (83), we find
= [ gfw)f(W)f(wy — ©1)/G(wy = w )G (w,)]
X {Ci[h(wi)g(wo = W)+ (wy)h(wy - wy)]
= C, [M{w)K(wy = wy)I(wg — wy) +h{wy — wy)K(w ) (w,)].
(B1)
In order to simplify this result, we have to find an
expression for
— Co[h{w)K(wy = i) {wy = wy) +klwy — w )Kw ) (w;)].

To achieve this, we insert (64) directly into (40) to
obtain

h(wy— w)M(w, wy)
1, G Ciw ® Im[k(w’)]dw G (wy - w’)
, (@ —wy—ie)(w’ —w0+w—ze) h(wy - w’)
Im[h(w’)] (W, - 0w, - w’)
—CZ—/.“ (W —wy—i6) (0 —w,+w-ie)

g(wo w’)
X dw’,
h(wy— w’)
The integrals in (2) can be again obtained by residue
method as explained in the text. This gives

hlwg - w)M(w, w,)

_ h(w —w)g w)
=1+C h°‘< TR M(w)

K(w)h(we = w)l{w)
h(w)

Inserting (64) on the right-hand side of Eq.
simplifying, we obtain

G (wy- w)[Cy - )Wy - ©)]

(B2)

+C2

-G (B3)

(3) and
Cz(wo -
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K(w)h(wy—

_ hwo-w)§ () c,
h(w)

hiw)

w)I(w)

(B4)
Simplifying and rearranging Eq. (4), we find
= Cy[K(w)h(wy — @) (w) +h(w)K(wy — w)(wy— )]
= = Cy[R(©) G (@ - @) +h(wy - ©) G (@)]
+h(w)(1 +Cihy = Ca g%) + Cy. (B5)

When Eq. (5) is inserted into (1), we obtain Eq. (84),
which is the desired result.

APPENDIX C

When B is zero, the integral equation (40) reduces to

G lwy~
. 2/ w Ifn[g(w').] 1\1/11@,/,%) dw , 1)
), (W —wg =€) (W —wy+w — i€)
which is the ordinary KP equation in terms of our func-
tion g(w0 — w). The solution of (C1) is given by
Mi(w, wy) =Dy = Dy(wy — w)J{w, - w),

w)M(w, w;)

(C2)

where

1 1
J(wo—w)== f g(wo ) W - Wy +w— de ImK(o.)’)

g +KA,
D= @ - KAy (c3)
and
—_ 2—
D=t TRA) €4)
with
1(” 1 1 ,
Aiz;f Koo = ImK(w,)dw (C5)

o

Our function M(w) must reduce to M,(w) above.

APPENDIX D

Inserting Pagnamenta’s solution into his integral
equation (Ref. 4), we obtain

Glwy— w)py(w, wy)
B w [ 7 Im|[G(w’)]dw’
=l+ Gy ./u (w’ = wy— i) (w' — wy +w — i€)

w 7 Im[G)] Hw,-w)(w,-w)
"Cz?fu @ —wy—i6) (@ —wy +w — ) dw’,

where all the symbols in the above expressionare as in
Ref. 4. For the first integral we obtain
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ciwf * Im[Gw")]dw’
T J o, (@' w) (w'—wo+w)

oW w)]  Glw-w') .,
=& ./u (w’ —w0+w-—ze) H(wo—w’)dw

_ G(z)G(wo - 2)
~Ciw(no%:s Res (2 = wy+w)H(w, - 2))
:ciw<G((:"°) - G(wi)- w)) ;

for the second integral we obtain

w ® 1 dw”
-C ——f Im " m
i “ H(w") Glwy,-w")
1 Im[G(w")] dw’
" (W' =wy+w” —i€) (W' —wy+w—1i€) °
i 0 1}

The very last integral by residue method gives

<G(wo—w) Glwy - "))

w"-w w—w’

and, inserting this into the above relation, we find

CoG(wy— w)wl(w)

® 1
+C, £ f Im 1 ————— dw’.
nJ, H(w') w’—w—ie
Doing the above integral again by the residue method,

we find

w)wl{w) +C2w<—$ - —3)— )

Collecting all the terms, we obtain

=1 +C1G(w0) -

CzG((—OO -

Glwy— w)d(w, wy) CiGlwy— w)
Hlw)~ w

which is the relation (31) of Ref. 4. We have used the
above method in our integrals.

+CyGlwy — )wI(w)+C2w< l),

*Part of a thesis to be submitted to the Indian Institute of
Technology (Delhi) for Ph,D.
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On analytic nonlocal potentials. IV. A closed contour

dispersion relation
Te Hai Yao

Mathematics Department, Bedford College, Regent’s Park, London NWI, England

(Received 29 April 1975)

We give a class of analytic nonlocal potentials which give rise to a closed contour s-wave dispersion

relation for sufficiently small coupling constant.

I. INTRODUCTION AND THE RESULT

In Refs. 1 and 2 dispersion relations are proved for
classes of analytic non-local potentials. However, in
these relations the left-hand contours are not closed.
Here we introduce a further class of analytic nonlocal
potentials which give rise to a closed contour s-wave
dispersion relation for sufficiently small coupling con-
stant.

The class of potentials V(X,Xx’) we shall consider is
defined by
V{x,x")=V(x,x', cosp),
x=|x|>0, x'=|x"|>0, 1=cosv>-1,
where v is the angle between X and x’, with

exp(— yx) exp(—vyx’)
x x!

Vix,x',cosv)=g
X f f dBdpB’ exp(~ Bx) exp(— B'x’)
0 0

xo(B,B’, cosv),

where g is real, o(B, ’, cosv) is continuous in 8, 8/, and
cosyin»o>8=20, «>8'20, 1=cosyv>~-1, is holomor-
phic in 8 and B’ in the region U(e) XU(e), where Ufe) con-
sists of all points at distances less than some arbitrary
€>0 from the interval [0, =) for all cosv in the above
range, and satisfies further:

(i) For «>B=20, »>8'20, 1=cosv=-1, o(B,3’,cosv)
is real and o(B, B’, cosv) =0(8’, B, cosv).

(ii) For (8,B") € U{e)XU(e) and 1 = cosy =~ 1, we have

const
'B+BOI(1+M |B' +BOI(1+)«)

for some B, >€¢>0 and A >0.
(iii)
o(B, 8, cosv) = O (8"

lo(8, B, cosv)| <

for B< Ule) and for some 1>z, uniformly in 8’ U(e)
and 1 =cosv=-1,

An example of such a spectral function is given by
o(B, B’, cosv) =aB" exp[- 1 (8 + 8)*] p""
witha >0, n>3, p >0.

For each potential belonging to this class with suf-
ficiently small g, we have, for the s-wave scattering
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amplitude T'(k), the following dispersion relation:

(E - Es)
s

ol ® ,Im[f (E")] 1
XU i H TR E-B

where E and E, are not on (- ©,~v] and [0, =), and D and
E; are constants.

T(E)=D +

(1.1)

{l. PROOF OF THE RESULT

For potentials belonging to the above class, the s-
wave partial potential V{x,x’), defined by

1
Volx,x") =2m(xx") f_: dcosv Vix,x’, cosv)
has the representation

Vole,x) =g f ™ dpap’ exp(- px) exp(- px") s (8, 8"),

where s(B, 8’) satisfies:

(i) For >8>y, ©w>g' >y, s(B,B’) is real and s(B, B’)
=s(g’,B).

(ii) s(B,B’) is holomorphic in W(e)) X W(e,), where
W(e,) is the region consisting of all points at distances
less than some arbitrary ¢, satisfying ¥ >¢; >0 and
€>¢y >0, from the interval [y, =), and for (8, B’} in this
region, we have

Al < const .
(8,8 S TR [T

(iii)
5(8,81,=, 0 (8= »)")

for Be W(ey), uniformly in B’ € W(e,).
The idea in the proof of (1.1) is the use of the formuld®

(note: in Ref, 3 we have put g=1)

S(g k)= LIy ABLE @ k3 B)/( + )]

U+ [P dplE e R B/ (B + AD)]

valid for % in the complex plane cut from iy to i« and
from -4y to -i~, where S{g;k) is the s-wave S matrix
and £*(g; k;B) are solutions of the following integral
equations:
Bl k; B =g £ V0;B) +g [ B I(k;B,BNE s kB
with

£(0) (7, . gy — - IM
: (k,/s)—jr apr g

Copyright © 1976 American Institute of Physics 13



* ” h
T3 8,8 = g f agr L8 e
kg

o

These solutions are given by D(g ; k) = exp[- (k)] D a5 (k)
Eg;k;B) =g £V %;B) "
© D k . ’ ©
+g2f ap PELL) o g, Dig; k3 B, 8) = expl= 7)) 23 " 8,065 8,8),

0 n-1 0 o 0 0
= 1) 7y(k) 0 n-2 0 0
8n(k) == k) Ty(R) 0 0 0 » n>2
Tk)  Ta(B)  Tuolk) oo Ty(R) O
Solk;B,B)=J(k;B,B"), b(k;B,8")=J"k;B, B,
J(k; B8, 8% n 0 0 0
Ak 5B, ') 0 n-1 0 0
5n(k;ByBI)=(;—!1)— Tk ;8,87 Tyk) 0 0 0|, n=2
TR B, B)  TuR)  Taq(R) e Ty(R) O
where

Tn(k)zjooo f dBdp] - dp}_, F"_i—[{ir
(k) = Tr[J"(k)], c c

J{k) being the Hilbert—Schmidt operator in L%(y, %) with ni ] fw J-m
’ X 0, coo
kernel J(k; B, B’). Ei P 57 ), ’ dpq oo dpy

We now consider values of £ with Rek >0, Imk >y,
Then J"(k; 3,B’), n=1,2, -c, admit holomorphic ex- )
tensions in (8, B) into W(e,) X W(e,) and can be written, Fi plane, i1
forn>1, as

J"(k;B,B’)=E2_{l_—Br]; fc dp{===dB;_

7.
S
g

L - Iw

X ces “ee o
:hi ij , dpy=++dp,

(SBp) ™ 5 (8L pisy)

B{+p1 i=1 B{+1+pi+1

with 8} =p’, where C is the contour in the complex plane
consisting of the line segment from y to ')/+i60/2 and

the half-line from y +ie,/2 to = +ie,/2 (Fig, 1). Hence
T,(k) has the representation, for %k in the same region, FIG. 1. The shaded region is W(ey).
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S(Bhets pn) |
B+ pa

X S(B: P]) R ("I:IZ S(B%; Pi+1))
B{+p1 izt Bl pin

Consequently, 7,(k) and §,(k) can be continued holomor-
phically across the cut [iy,i») to the region — 60/2 < Rek
<0, Imk >y, on a new Riemann sheet T';, in particular
to the region - 60/4 <Rek <0, Imk>v, onT.

For Rek >0, Imk >y, the kernel J(k;8,8’) is a L?
kernal along the contour C. If we let f(k) be the Hilbert—
Schmidt operator with kernel J(%; 8, ’) in the space
L*C) of square integrable functions on the contour C,
then the operator J(#) can be continued holomorphically
across the cut [iv,i%) to the region —¢,/2 < Rek <0,

Imk >y, on the new Riemann sheet I';. If we let V,(g) to
be the union of the set Rek =0, Imk >y on the original
Riemann sheet T') and the region —¢,/4 < Rek <0,

Im#% >y on the Riemann sheet I'|, then we have, for

ke Vi),

o) = Tr{ I "(k)]

and?
|8,(k) | < explr/2)| T(R)II" /02,
We also have

IIF(k)|}< const

n=2.

for ke V, (e),€1), the part of V, (g,) at a distance greater
than some arbitrary ¢; > 0 from the point ¢y. Hence
D(g ; k) is holomorphic in & in V (g, ¢;) and hence in
V.(¢). Further, we have, given 1> 6> 0, the relation
1+6> |D(g;k)|>1-0
ke V, (), Rek=0,
for g sufficiently small, since we can show that lIJ (&)l
< const for k€ V,(¢,), Rek =0, using property (iii) of

s(8,8').

Similarly, we can continue D(g; k) holomorphically
from Rek <0, Imk >y on the original Riemann sheet I';
across the cut [iy,ioo) to the region 60/2 >Rek >0,

Imk >y on a new Riemann sheet T',, leading to a function
holomorphic in & in the part V_(¢;) on the Riemann sur-
face consisting of the set Rek <0, Imk > ¥ on the original
Riemann sheet 'y, and the set ¢;/4 >Rek >0, Imk >y on
the Riemann sheet T'y; further we have, given 1>6>0,
the relation

1+0> |[D(g;k)|>1-80,
kS V_(e), Rek=0
for g sufficiently small.

We now consider the integrals

Pleik)= f ap £&5 k. B)

TRyt B
We have

MasR=g [ a8 gy J' ag’
4 ke

s(B,8) . & f 1
“Frit "DEm ), PETR

15 J. Math. Phys., Vol. 17, No. 1, January 1976

© [w (BI n)
I . . ’ Vo
xf N O
Y
For Rek >0, Imk >V, on Iy, the integrals

IT(g;k)ng B 7 iszf Sl

B Fik
can be written as
1 I
litg: ) =g f BEE J ap S
(o}
(o]

and hence can be continued, as functions of 2, holomor-
phically from this region across the cut [iy,i®) to the
region —¢,/2 <Rek <0, Imk >y, on I';, leading to func-
tions holomorphic in % in V (¢;). Further, using property
(1ii) of s(B, B’), we obtain

g R < |g
Again, for Rek >0, Imk >y, on I'j, we have

oconst, keV,,), Rek=0.

Ié(g;k)zng a5 iﬁ I ap’
14 Y
g an [ gan SBB")
XD(g,k,ﬁ,B)fy apr SEE
=2 D & f f j dpdp ag”
= Y 14 rd
1 Ca an S(B,8")
men(k,ﬁ,ﬁ)———sﬂwk
gz,,zog" f f f dpdp’ ap"
1 .n an SB,B")
Xm 5n(ka676) B”:Fik ¢

The integrals inside the summation in the last line are
holomorphic in V,(g)).
For B and f’ on the contour C, and k< V, (), we have’
|00 5 8,87)| < const/{| 8] "M (Rep’)? + 2] /21,
also <conste(8-7)",

‘B—z’7| < ¢, for some &;

[6,(k; 8,8 | < const/{| 8] "*M[(Rep")? + ]!/ 2},

also <comst-(8-7)", |[B-iy|<;
t (=172 T\l fn=1
|6k 8, 87) | < ———=22 i P4 )]
181 V(R B +97 n

n=2,
also <conste (8- ) e 1/2| j(k){l""/n("“z”z,

[B=iv|<¢, n>2;

and

(g ; k)] < g2 {const+ | g - const
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© olnm1)/2
+ 22 lg"’ DT « const
n=

for k€ V,(e,€,), using || J{k)l|< const there. Hence

I3(g ; k) are holomorphic in & in V, (g, ¢,), and hence in
V.(e)). Hence the integrals I}(g ;%) have been continued,
as functions of 2, homomorphically from the region
Rek >0, Imk >y, on I'y, across the cut [iy, i) to the
region ~€,/2<Rek <0, Imk >y, on T';, leading to func-
tions holomorphic in % in V,(¢;). Further, using

Il J(&)ll < const for ke V,(e,), Rek >0, we have

[I§(g s k) ] < g?econst

for g sufficiently small. Hence the integrals I*(g; k)
have been continued, as functions in 2, holomorphically
across the cut [¢y,%%) from the region Rek >0, Imk >y,
on Ty, to the region —¢,/2 <Rek <0, Imk>y, on Ty,
leading to functions holomorphic in % in V,(g). Further,
we have, for kc V,(¢;), Rek=0:

Mgk <|g

for g sufficiently small.

o const

Similarly, these integrals I*(g ; k) can be continued
from the region Rek <0, Imk >y, on I'j, holomorphical-
ly to the region 60/2 >Rek >0, Imk >y, on I'y, leading to
functions holomorphic in %2 in V_{g;), and further we have,
for ke V_(ey), Rek <0:

Ig;R)| < g

for g sufficiently small.

> const

Consequently, S(g ;%) is holomorphic in % in the
union of V,(e,) and V_{¢,), and since it is holomorphic in
the sheet I'y cut from ¢y to ¢ and from — iy to —ix, it
is holomorphic in the union V of these sets. Further,

16 J. Math. Phys., Vol. 17, No. 1, January 1976

using property (iii) of s(8, 3’), we can show that, given
1>6>0, we have

1+0~ |D(g;k)| ~1-8
and

»const

I*g;R)| < g

for % in the sheet Ty cut from ¢y to ¢~ and from -y to

— 1o, for g sufficiently small. Consequently, we have
shown that S(g ;%) is holomorphic in % in V, and that for
k in the union of the sets {k< V,(¢;), Rek >0}, {kc V_(g,),
Rek <0}, and {£c Iy, cut irom 7y to i@and from — iy to
— jeo}, we have

1+6>|S(g;k)|>1-6
given 6 satisfying 1 > 6 >0, for g sufficiently small.
Hence using?
T (- k*) = T (k)*

for k in the sheet I'y cut from éy to i~ and from - ¢y to
—{%, we arrive at the subtracted dispersion relation
(1.1).
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On conserved quantities in kinematic dynamo theory
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Using a Lagrangian approach to the magnetic induction equation in an infinite medium, we demonstrate
that there exist seven conserved quantities which, by analogy with classical mechanics, we label as
“energy,” “momentum,” and “angular momentum.” For prescribed fluid motions we spell out the detailed
conservation equations. For a fluid motion which is turbulent we also give the average conserved quantities.
In a pragmatic sense it is expected that these conservation laws will be of use in attempts to obtain
numerically accurate solutions to the turbulent kinematic dynamo equations. Since the magnetic induction
equation is not self-adjoint, numerical attempts to date have to impose some extraneous ad hoc “criteria of

goodness™ at any given level of numerical truncation. The conserved quantities given here provide an
internal check of the accuracy of any numerical calculation without the necessity for arbitrarily imposed
external criteria of accuracy. As such they should be a powerful tool in rapidly increasing the accuracy of
numerical solutions to the kinematic dynamo equations. We also point out that the conserved quantities
can be used to indicate the possibility of kinematic dynamo activity ahead of any detailed calculations.

I. INTRODUCTION

In recent years the basic theory of kinematic dynamo
action in turbulent media has progressed extremely
rapidly (see the review by Gubbins' for a partial list of
contributors to the field) since the pioneering work of
Parker (1955).2 It has become apparent that simple
kinematic dynamo models can account for the sustained
presence of magnetic fields in astrophysical bodies and,
occasionally, even for the observed spatial and temporal
variations of, say, the classical “butterfly” pattern of
sunspot evolution—at least in gross morphological out-
line.

One of the main technical difficulties remaining in at-
tempts to improve our understanding of the dynamo phe-
nomenon is that only for very simple models of bulk fluid
velocity, bulk velocity shear, and velocity turbulence
can the kinematic dynamo equations be solved analyti-
cally. And when numerical calculations are used on
more complex problems, the fact that the kinematic
dynamo equations are not self-adjoint normally implies
that a small numerical error can rapidly grow to an
unacceptable level—leaving the results of the computa-
tion open to question (but see Gubbins!). For (relatively)
simple situations the numerical calculations of Stix, 3
and those of Rose and Levy,* which use a variational
principle (Lerche®), would appear to have overcome to
some extent the numerical rounding error problem. But
in more complex situations there is still a considerable
amount of room for improvement. The question we in-
vestigate in this paper is related to these problems. It
would be very useful if we could obtain some conserved
quantities from the kinematic dynamo equations for
arbitrary fluid motions. Such quantities could then be
used in two ways: first as checks at any given stage of a
numerical calculation; second as necessary, but not suf-
ficient, conditions for kinematic dynamo activity.

The first application is fairly obvious. If we can find
conserved quantities, then at each stage of a numerical
calculation one can check to see if they are conserved.
If not, then a numerical iteration can be used to improve
the accuracy of the calculation at each stage and com-
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parison again made with the conserved quantities until
some desired degree of accuracy is attained. This is an
improvement over the variational principle5 already in
use because, as we have remarked already, the kine-
matic dynamo equations are not self-adjoint and thus
neither is the variational method. Accordingly one has
to impose some arbitrary criterion of accuracy on the
variational method. This leads to “criteria of goodness’
which are not contained in the kinematic dynamo equa-
tions but are dependent on the individual and are, there-
fore, imposed in an ad hoc manner (i.e., there is no
Rayleigh—Ritz statement available which guarantees

that one is getting closer to the correct answer as more
terms are included in the variational method). It would,
therefore, be extremely useful to have available con-
served quantities which arise from the kinematic dynamo
equations. These would give criteria of goodness which
do not depend on external imposition.

,

The second use, namely as necessary conditions for
kinematic dynamo action, would also appear to be of
some interest. What we would seek here is the analog of
Cowling’s theorem which states that steady axisym-
metric motion cannot support a steady axisymmetric
magnetic field. And Cowling’s argument depends only on
symmetry statements. Thus conserved quantities must
be related to the symmetry of a given situation and must
also give information on the necessify of certain sym-
metry breaking motions for kinematic dynamo action.
Such conserved quantities would then be of use in de-
tailing classes of motions which could not be responsible
for dynamo action. And they could also be used for de-
tailing classes of motions which may give rise to
kinematic dynamo activity.

In this paper we will set up seven conserved quantities
(which follow from the magnetic induction equation in an
infinite medium) which we call “energy,” “momentum, ”
and “angular momentum” by analogy to the classically
conserved quantities of mechanics.

We shall then perform a statistical averaging to obtain
the average conserved quantities in the kinematic dy-
namo equations; and we shall then illustrate how they

Copyright © 1976 American Institute of Physics 17



behave under simple situations. Essentially then we
shall be constructing “virial theorems” for the magnetic
induction equation and the kinematic dynamo equations.

Il. LAGRANGIANS, HAMILTONIANS, AND
CONSERVED QUANTITIES

A. General remarks

For an infinite medium of constant electrical re-
sistivity, 1, possessing a given velocity field v(x, ), the
equation describing the evolution of the magnetic field
B(x,1) is

0B;

_gt— ‘nsz +Euk€k1m a (UtB ) (1)
From Eq. (1) it is well known?® that it is possible to
construct the Lagrangian

. 0B; 9B 8B 0B}
L= [dxadt <B, atl 7=t o 9%, L ey in€nim V1B o )

)
= [&xdt [,

such that extremal variation of the Lagrangian with
respect to B} yields Eq. (1), while extremal variation of
the Lagrangian with respect to B; yields the equation
adjoint to Eq. (1):

.
";fi + VB — 9Bn _o. 3)

Emirbr1ily ox
Thus B is the adjoint vector field to B. For later pur-
poses it is opportune here to write Eqs. (1) and (3) in
the conventional Euler—Lagrange form using the
Lagrangian density / which, in principle, is a functional
of B;, B}, 9B;/9x,, 8Bi/ox;, 8B;/dt, 9B}/dt, and of

v(x,t). Thus

5 o Gome) - w Gg) o @
and

% Geoan) w @)= ®

where B; =2B,;/5t, Bi=0aB:/2t. From the form of the
Lagrangian density (2) we also have a canonical
momentum density of

aL
= = :B"’
L= 55 6)
so that we can construct a Hamiltonian density
. 9B; 0Bj OB}
H=1;B;- [ =~ é}iax—l —eifkeklmUZBm_a?z’ (7
i J i

and a Hamiltonian H through
H= [ dxdl /4. ®)

B. Construction of conserved quantities

The construction of conserved quantities is based on
symmetry arguments. The magnetic induction equation
and its adjoint, together with the velocity field v(x, ),
should not depend on how the spatial coordinates are
chosen nor where the origin of time is measured from.
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(1) “Enevgy” construction: If, in the Lagrangian (2), {
is replaced by ' =/ + 7, where 7 is arbitrary but in-
finitesimal no difference should ensue in the Lagrangian.
But since the regime of temporal integration in Eq. (2)
is over all values of time, this implies that the
Lagrangian densily should remain unchanged under such
a shift in the origin of time measurements. Now, if we
had a solution to Eqs. (1) and (3) (subject to appropriate
boundary and/or initial value conditions), then the
Lagrangian density would be representable as an ex-
plicit function of space and time:

L= L[x,1). (9)

Then changing the origin of temporal measurements
will change the Lagrangian density:

L

L(X,["l'T): EY]

L&, 1) +T == (x,0) +0(r?) (10)

But, from Eq. (9) since B, B*, and v are also functions

of x and ¢, it follows that
;9L 3L 8By . 3 2B,
at 2B; @l aB; i
o[ 3B; 3/ aB;
"B, ot B ot

, a1)
2/ 2B, 8/
T (a(aBj/aan o, T (a(aB;/axa)>

xBi oL vy
3%, dv; ot

We can now use (4) and (5) to eliminate 3/ /8B; and 38/ /
9B} in Eq. (11). Upon so doing we obtain

oL

8/ 2
—_— T - +
=~T% B0, ", ( i 3B xy)

o/
+5, 3(3B,/3x )>

= T%—L oL +7TV.Q.

- v,

But Eq. (12) must hold true for all infinitesimal values
of 7. Thus

M .- s 2L

. 13
al ot A, 13

We now integrate Eq. (13) over the whole of coordinate
space to obtain

Kl e 3, OU; 8L
ff’qu_"j TX3 0,
aB; dv; )

== €516€pjm f d3XBm ax, ol

(14)

The surface term [Q-dS gives no contribution to Eq.
(14) in an infinite medium of constant resistivity.
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Equation (14) is equivalent to the power theorem in
classical mechanics. It represents the rate at which the
spatially averaged Hamiltonian density changes with
time due to the acceleration 3v/a¢.

(ii) “Momentum” conservation: In a manner similar
to that for “energy” conservation [Eq. (13)] we can
change the origin of the spatial coordinates from x to
x + ¢, where £ is infinitesimal to obtain “momentum”
conservation. Proceeding by analogous steps, we ob-
tain the equation

8 (3 8B; a[ a_jgi) af dv; |, 3Ty,
—_— — = +
at <aB* Bx; aﬁ, ax; dv; Ay Xy (15)
where
aB‘ 0B af
— . P
Tai=L0; aB*?ax «) 0x; 09(dB; /ox )
When Eq. (15) is integrated over the whole of coordinate

space, and where once again the surface term [T,,dS,
is ignored, we obtain the conserved “momentum”
statement

(iii) “Angular momentum” conservation: We have
already seen that the physics of the magnetic induction
equation (1) must be invariant with respect to changes
in the origins of the temporal and spatial coordinates
systems. It must also be invariant with respect to
rotation of the inertial spatial coordinate system to
another inertial spatial coordinate system. Thus in the
Lagrangian density if we replace x; by x{=x; +eR; x;
with R;;=—R; (the rotation matrix) we must again ob-
tain a conserved quantity—the analog of “angular mo-
mentum” in classical mechanics. By proceeding in a
manner similar to that for “energy” conservation it can
be shown after some elementary, but tedious, algegra
that the relevant statement is

d e f. D 3
ot ) TXE (xﬂ ox; ax) B
3/ ? ? s
-—f 50, <xﬂ o, - x; axs) v, A°K a7
+ | v, Bn€ €; 2 B d%,
1 2mSeim Bk ax €jir ax

where we have already integrated over the whole of co-
ordinate space, and have again set the appropriate sur-
face term to zero. If we multiply Eq. (17) by €,4;, we
obtain

8 al 2 ]
d3 = - : 3 —_— ; ——— N
5 XL, eaﬂ,fd X 30, (xB 57, X; oxs )v,

- zj d’x [B‘;ejlm_Bjéalm]a—
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(lem);

where the angular momentum density L is given by

—a—) B,. (19)

0
L aBtBj (xsa_J;: - X axB

Equation (19) expresses the rate of change of the “angu-
lar momentum” of the field in terms of the applied
“torque.”

Written out explicitly in terms of v, B and B* the
seven equations (14), (16), and (18) are

a_ a3 ( BB BB* ?_EZ)

+€; 1€ pim¥ 1 B

ot axj 8x m axj
9B] v,
— . 3 i
_e”kekmf d°x B, 5%, ot (20a)
2| pxpr 2L
at fd"Bf ox;
8B, dv;
:—ea,kekjmj' d’x B, —% o, ax (20b)
and
= dxeaB,B"< 8%, )
9B}, 0 0
:—Eklkekjmeaﬂij d3me-a}-f (xs om X ‘375) vy
-2 Px (Bieyin - Bitarn) 2 (150 (200)

I, STATISTICAL AVERAGING OF CONSERVED
QUANTITIES

A. Statistically exact conserved quantities

Now in dealing with situations in which the velocity
field is turbulent, but possesses an ensemble average
value, it is usual to note that an ensemble average of
the individual members of a turbulent system can be
performed. Thus we write

vy=V;+dv;, B;=b;+8B;, Bi=

where V,; ={;), b;=(B;), b}=(B}) and angular brackets
denote an ensemble averaging process. Then upon en-
semble averaging Eqs. (1) and (3) we obtain

b} + 6B;

3b,
’aT —~ NV =€ 14 p1m a — [Vib +(60,6B,)], (21a)
90B; 3
- V2B =€; jpaim E

J (21b)

X(V,6B,, + 5v;b,, + 60,;0b,, — {6v,5b,,)),

ab; 0b;, 0583,
FT +nv2b =€pmirErti (V, 3r <6, v >),

i (21c)
BGB* 2 0682, ob;,
m
+NVOB] = €101 (V, ———’Laxj + ov, ox,
05b;, 006b;,
+ G'UZ axj <6 1 axj >) . (21d)
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Further, if we now ensemble average the conservation
equations (20), we cbtain

9 s. [ (9b; 3b}  /35B; 98B} aby
Ea -_--—i u P

of dx[n<a’\ aﬁj +< 0x axj>>+enla€klm (Vb ;
> Vz< aoB >)]

abt 2V, AV, 98B}
—€. i 3 i Z73 had 2 i
=€ 10 €pim J d°x (bm ax, at + ot <6'Bm axl >

+{ov,6B,,) %b;‘— b <61)
3

060, BGB* aév ab}
+ 1
b"'< Tox, < m a1 >ax,
3ov, 30B}
22a
+< ot ox, >> (222)
VR
= B
3L a’x (b 3 o)
20t
:—ea,kekjmf a*x (bm—a—;fgf
aV < aaF> <86B“ 35,
m ax,
(22b)

L 3B [ 200 86B" aév
X, B 0x X;

and

a +
37 [ €api %% (b%02;b; + (6B, 5B;))

Bb" 34B;
:‘eptkekjmfasif d’x (b ax Qg V;+ <53m ‘a;;L> Qq,V;

a 23 ab*
+ Dy < ;B Qg; dv >+ a—xL (6B S, 5,7
X 1

<§B 90B; Qg b0, >> 2f d?

o
x 2 (v,bm {00, 0B,)) + (OB 1m = OB E i)
7

X ([btxeﬂm - b‘;ec\tlm]

X a—a_ (50, + V,GBM))

X

¥ <(6B’;e,-,m ~ 8Bearn) (611,6Bm)> , (22)
2

where Qg; =x48/0x; — x; 3/3x5. As well as the ensemble

average conserved gquantities given by Egs. (22), for

each member of the ensemble we have individually con-

served quantities obtained by subtracting Egs. (22a),

(22b), and (22c¢) from Egs. (20a), (20b), and (20c),

respectively.

Without further information on the form of the large-
scale, ensemble averaged velocity field V(x,¢) and with-
out more information on the form of the velocity turbu-
lence, it is difficult to proceed further with the general

development of the conserved quantities. However, there
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6B,

does exist one particular class of situations which are
often investigated in kinematic dynamo theory for their
mathematical simplicity. This class occurs when cor-
relations of quantities involving more than two random
elements at a time are set to zero by fiat. This approxi-
mation is known under a variety of names; quasilinear
theory, first order smoothing theory, the random Born
approximation, etc. Its general realm of validity has not
been established, ® but its invalidity in several special
cases has been established. *~* And, in fairness, we
should also point out that its validity in two special cases
has also been established recently.’ We shall consider,
then, the behavior of the conserved quantities under the
quasilinear approximation.

B. Quasilinear approximation to conserved quantities

In the ensemble averaged equations ignore all corre-
lations involving more than two random quantities.
Under this approximation Eqs. (21a) and (21c¢) remain
the same, while Eqs. (21b) and (21b) give respectively

]
~NVEEB; = ¢ ; spfnim =— (V16B,, + Db, 6v,), (23a)
FY] H ik RIm axj 1 m H
<+ a B-O a +
905; +NV28B =€, 15Ep1s (V, 5Bu 4 5w 7 b . (23b)
ot 0x;

Equations (22) then reduce to

3 s 3b; 9b} /0B, 36B! ( ab}
ot dx["(ax,. 5x, \ox, o, J)Cinm \Vidn 5

ab? 30B; < 30B;
+ x. {6v,5B,,) + b, <6v, o, +V, ®B,, —* X,

avt av; v, 36B:
:e“ke’”’"f 2% (b"‘ ax, FERETR éB’" % >

360, 058" ab? 88y,
o0y £ .
bm<at oxy > N [ <§Bm ot >> @42)
k) e @1 8_6§L
:-"Ec”kfkjm J’d3x<bma‘?_ -a-;:l +—a—x-il < " axl
, <86Ba afw> <GB ?ﬂa» (24b)
Bx, Bx,-

2 f A% €40 (B300:b; + (5B324;0B;))

ot
ab
:—éi’lkfkjmeaﬂif d3x< ™ 3

08B;, 00B;,
+ <ﬁBm —-;;2> QBiVj +bm _a_x_;agsiévj

T iV

gé& <6‘B 93161),)) - 2J' d3x ((b:zejlm_ b;ealm)
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0 -
X5 (Vibm + (60,8B,,)) + <(5BZ€jtm— 5B o 1m)
7

x =2 (6v,b,, + V,0B,) ) X (24¢)
ij

IV. A SIMPLE ILLUSTRATION

A. General remarks

Suppose that the velocity pattern is static, av,-/atz 0.
Then energy conservation gives

9 3B
fd3 (af gEn+€‘jk€klmlem —-af.:)zEzconst. (25)
7

Thus, if there exists a most rapidly growing mode for
B;, Eq. (25) then implies that it must be exactly com-
pensated by a decaying mode of B} with the same time
scale in order that E be constant. Reversing the argu-
ment, if one can show that all modes of B} are decaying,
then a guarantee exists that at least one mode of B; is
growing and dynamo action ensues. To put this point
mathematically, consider again Eqs. (1) and (3). Write

Bi (x) t) = E Bi (X, 0) eXp(Ut),

Bi(x,t) = Z) Bj(x,0) exp(0*t),

to obtain
= NVEB; + € i pim a (UzB )=0, (26a)
0* B}, + NV BY — € pfpim V1 SB =0, (26D)

Now multiply Eq. (26a) by Bj(¢*), Eq. (26b) by B,(0),
add the results, and integrate over coordinate space to
obtain

(0 +0% [ d*x By(x,0)B}(x,0%) =0, (27)
where, once again, the surface terms have been set to
zero.® From (27) we see that for ¢#-0*, [d®xB;(x,0)

X Bj(x,0%) is zero (i.e., the normal modes of B} are
orthonormal to the normal modes of B; at different eigen

values), while for ¢ =- 0* we choose (in the standard
manner) the orthonormality condition

[ d%x B(x,0)B}(X, 0*) = 5,,o0. (28)

Hence, Re(o) =~ Re(0*) and Im(0) = - Im(c*) for those
modes satisfying Eq. (28). Thus, if Reo* <0, implying
a decaying (in time) adjoint field B}, then Reo >0, im-
plying a growing (in time) dynamo field B;.

Now this result (28) should also be contained in the
Hamiltonian statement (25). To show that it is, consider
Eq. (26b). Multiply it by B,(0,X) and integrate the result
over all of coordinate space to obtain

o* [ B,(x,0)B%(x,0")d’x
:fdax(aB‘(xo) i(x,0%)
+ €i 1€ p1mV 1B (X, 0) B' (X g )) (29)
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With the temporal dependence included, Eq. (29) be-
comes

J’ B,(x,1) m (x, ) d*x = [ Hd’x. (30)

But, according to the energy statement (25) we have

;lt[B (x, t)aB:"(xt x:—fﬁd3x 0. (31)

Writing B,,(x,t) and B;,(x,1) in terms of their temporal
normal mode dependences, the conservation of the
Hamiltonian yields, from Eq. (31),

0*(0+0*) [ B,(x,0) B.(x,0%)d*x=0. (32)

In other words, conservation of the Hamiltonian implies,
and is implied by, the orthonormality statement (28) for
static velocity patterns.

Thus, if it can be shown for a given velocity pattern
that any one mode of the adjoint field B} is growing (or
decaying) then, under Eq. (28), there must exist a de-
caying (or growing) normal mode for the magnetic field
B.

i

And, depending on the static velocity pattern, it can
happen that the adjoint equation for Bj is considerably
simpler to solve than the equation for B;. It is in this
sense that we regard the conserved quantities energy,
momentum, and angular momentum as being criteria
capable of indicating the possibility for kinematic dy-
namo activity ahead of detailed calculations.

It is, of course, not necessary to use modes with an
exponential time dependence [and a space dependence
determined by, say, Eqs. (26a) and (26b), which are
spatially complete in 0 |x| S«]. We could equally well
use a set of modes which are spatially complete in co-
ordinate space [say, exp(ik-x)] and then obtain the ap-
propriate time dependence. The argument given above
would still obtain, of course (i.e., we can expand plane-
waves exp(fkeXx) in the form of any other set, spatially
complete in 0 < x| < ),8

B. A particular velocity pattern

In order to illustrate this approach, we consider the
velocity pattern

Vi=0a;;X; (33)

with a;;=const and a;; =0 so that the velocity pattern
(33) represents incompressible flow, 9v;/9x;=0. As we
shall see directly, this particular pattern leads to a
decaying temporal dependence for the modes of B. Thus
it does not give dynamo action. However, it is useful as
an illustration of the general technique.

Then with
Bi(x,t) = [ Bi(k,t) exp(ik - x)d’k, (34)
Eq. (3) gives

B}

af ’7sz +€m1kekltala ak (kJB:n):O’ (35)
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which can be written as

B! .
af T Gmem Gr

a +
nkiB = p, 2Bn

+aml‘B* ma i ak

(36)

In the interests of simplicity, we shall consider only the
situation where a,,, =a¢€,,, .,/A with @ and X constants.
Change variables in Eq. (36) with

T=at, k;=kn'"*/a. 37)
Equation (36) then reduces to
B} - . oB
e L P e N P (38)

[+

which is readily solved. First write

Bi=B\/X, Uy =€nayy ' B, (39)
so that

aBTl 2 p+ -1 aUut

T - K°By==2X (R‘K) aKa s (403)
and
oU 2
S KU N U——eﬂylc)\)\iag“ : (40b)

o

Now rotate the ¥ coordinates until A points along the Z

axis, Write k,=«, cosé, k,=«, sinf, x,=k,, and set
U,+iU, =73 exp[T(k% + &2)](s +¥) exp(+i6), (41)
when Egs. (40b) reduce to

ds 0s

—ﬁ_ - "a~9 :0, (428.)
ar a1+ cosZG)—— - ¥ sin26
ar ~ 26 ~ VS

=—iK, (ZK_LTS +s cos(20)k;! + — sm(29)/<11> . (42b)

08

With £ =tanf- 27, Eqs. (42a) and (42b) can be solved
readily to give

s=s(6+T) (43a)
and
7 =G(&) explH(E, 7)) - ik, exp[- H(E, 7))
x [T ar Mg, ) explH(E, ), (43b)

where
H(g,7)=21In[1 + (£ +27)],
M, 1) = (2!(11"5(9 +7)+5(6 +71) cos(28)«]!

o 2s (0 +T)>
+ k"1 5in(20) ——-*
( 06 s=tan~1¢8)

and where G(£) and s(8 + 7) are arbitrary, but periodic,
functions of their arguments.

Note, then, that both U, and U, are growing functions
of time for arbitrary, but real, k so that, from con-
servation of the Hamiltonian (25), we expect that all the
normal modes of the magnetic field will be decaying in
time.
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To show directly that this is indeed the case, con-
sider the magnetic induction equation (1} with »,
=a€; X2,/ A, It is obvious, of course, that this defeats
the general purpose of using the conserved Hamiltonian
and the behavior of the adjoint field B* to infer the be-
havior of B. However, it is of use to illustrate the point
that the temporal dependence of B does follow from
knowledge of the behavior of B* together with the con-
served Hamiltonian statement. Upon Fourier trans-
forming Eq. (1), we obtain

¢B;

a—,l + BB, — Q€ s g i st e\ 11»’, T =0. (44)
Again write T=at, k;=k;n'/*/a, and rotate the k co-
ordinates until X is pointing in the Z direction. Then
Eq. (44) gives
0B, 2 g
FT—; +KzBi+(Kx8—K;—I@m)Bi-FE,-aB}\s)\"Ba:O. (45)
Then with k, =k, cosé, k,=x,sind, k,=«,, Eq. (44)
reduces to

3B, 9B,

*‘87’{' +KBx——a—9‘ +By:O, (44&)

3B, 9B

98y 5 _ g -

Py + kB, — 30 B,=0, (46b)

8B, . ., 0B,

ppe +Kk°B, - 30 =0. (46¢)
With B=bexp(- «’7) and £ =6+ 7T Egs. (46) reduce to

ab, ab ab,

Py +b,=0, -b,=0, e =0

with solution

bz: bz(‘g)y
by=ila,(£) exp(iT) - a,(£) exp(- i7)],

b, =a(£) exp(iT) + ay(£) exp(- i7),

where b,(£), a((&) and a,(£) are arbitrary, but periodic,
functions of their arguments. Thus the temporal be-
havior of B is decaying in time, with a decay rate nk?
which, apart from a periodic oscillation, is exactly the
opposite temporal dependence of the normal modes of
B*. Thus 0=~ 0" by direct construction. Hence a static
velocity pattern

2= e o N/

gives rise to damped, but oscillatory, magnetic fields
in an infinite medium; and this fact can be demonstrated
either by direct solution of the magnetic induction equa-
tion (1) or by solution of the adjoint field equation to-
gether with use of the conserved Hamiltonian.

While we recognize that the particular situation chosen
is one in which we can solve either the induction equa-
tion or its adjoint equation with equal facility, the point
we wish to make is that we can infer the temporal be-
havior of the normal modes of the magnetic field B by
first solving for the adjoint field’s normal modes and
then using the conserved Hamiltonian statement, without
having to solve the induction equation at all.
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V. DISCUSSION AND CONCLUSION

In this paper we have obtained the conserved quantities
“energy,” “momentum,” and “angular momentum” that
follow from the magnetic induction equation, and its
adjoint, in an infinite medium of constant resistivity. We
also obtained the average conserved quantities in the
case that the fluid velocity of the medium is turbulent,
and we then gave the approximate form of the conserved
quantities under the quasilinear assumption to the
turbulent flow.

There were, and are, two main purposes for deriving
the conserved quantities. The first, as we have already
mentioned in the Introduction, is the fact that in any
realistic fluid flow the kinematic dynamo equations are
most often solved numerically using a variational
principle.® The non-self-adjointness of the equations
then means that the variational principle is also not self-
adjoint. This in turn requires some extraneous criteria
of goodness to be imposed on the numerical solutions
at any given level of truncation. And the difficulties that
then arise are due to the fact that the criteria of good-
ness used are not independent of the human element.
Thus imposition of different criteria of goodness by dif-
ferent investigators means that any particular numerical
solution is likely to be inaccurate to a degree which is
difficult to define. The conserved energy, momentum,
and angular momentum alleviate this problem to the ex-
tent that they provide internal criteria of goodness which
arise directly from the induction equation instead of
having to be externally imposed. Thus in any particular
numerical calculation one can check to see if the nu-
merics is preserving the energy, momentum, and angu-
lar momentum, and the numerical step size can be ad-
justed until they are preserved. This is clearly an im-
provement over ad hoc criteria of accuracy.

The second main purpose was to obtain criteria that
may be used to indicate whether a particular fluid motion
is at all capable of giving rise to kinematic dynamo
activity. The point here is that it is notoriously difficult
to obtain solutions to the kinematic dynamo equations
even for simple fluid velocity patterns. Thus, before
one commits an inordinate amount of time and effort in
an attempt to solve the kinematic dynamo equations
under some particular velocity field, it would be useful
if one had criteria that could at least give an indication
that there is a possibility for dynamo action ahead of any
detailed calculations. The conserved energy, momentum,
and angular momentum are clearly useful in this re-
spect. For example, we considered the case of a static
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velocity pattern, 8v;/9t=0. Then energy conservation
gave

dB; 0B; dBj
f d’x (n —a;j 7 +€; 1 pimV1 B 37;—> =E =const.
J 4

We then showed that conservation of the Hamiltonian
together with solutions to the adjoint field equation im-
plied the temporal dependence of the magnetic field, and
we verified this by solving directly the magnetic induc-
tion equation.

The point to be made here is that, depending on the
velocity pattern, it can happen that the adjoint equation
for B* is considerably simpler to solve than the equation
for B. Then by inference, and without knowing directly
the solution to the induction equation, one can cate-
gorically assert whether the induction equation admits
of a dynamo mode or not.

It is in this sort of sense that we regard the conserved
quantities, energy, momentum, and angular momentum
as being criteria capable of indicating the possibility
for kinematic dynamo activity, ahead of detailed calcu-
lations. We shall report on several such investigations
at a later date.
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Using the ladder representations of SU(2,2), we derive explicit transformation laws for massless free fields

with arbitrary helicities under global conformal transformations.

1. INTRODUCTION

The group SU(2, 2) is known to act on Minkowski
space—time as an extension of the group of Poincaré
transformations and dilations. It is, precisely, a
fourfold covering group of the conformal group C(M*) of
a compactification M? of ordinary Minkowski space M*;
see Ref. 1, This paper deals with the well-known role
of the conformal group as a symmetry of zero-mass
wave equations.?-* We consider some global aspects of
this symmetry. The starting point is the work of Mack
and Todorov, ® who showed that the irreducible Wigner
representations of the Poincaré group, characterized by
mass zero and the helicities =0, £1/2, +1, ..., can
be extended to representations of the Lie algebra of the
conformal group by generators of unitary transforma-
tions. This series of representations is called the
ladder series of SU(2, 2).

After a review (Sec. 2) of the action of SU(2, 2) on
Minkowski space and its (incomplete) decomposition into
the subgroups of Lorentz transformations, dilations,
translations, and special conformal transformations,
we discuss in Secs. 3 and 4 the results of Ref. 5 from
the global point of view: The ladder representation of
the SU(2, 2) Lie algebra is exponentiated to a unitary
representation of the matrix group itself. The connec-
tion between the irreducible parts of the ladder series
and the Wigner representations is investigated in detail.
For instance, the helicity determines the global be-
havior; only odd helicities belong to representations of
the conformal group itself, even helicities to SO,(4, 2),
and half-integer helicities to SU(2, 2). For the special
conformal transformations, we calculate the ladder
representations explicitly in terms of integral trans-
forms on the zero mass shell. Finally, we use the re-
sults of Secs. 3 and 4 to extend the work of Weinberg®"
on zero-mass field equations to include the transforma-
tion properties of these fields under finite conformal
transformations.

2. DECOMPOSITION OF SU (2,2) AND THE
CONFORMAL GROUP C (M%)

In this section, we collect the notational conventions
and the basic formulas about the 15-parameter group
SU(2, 2) and the conformal group C(M*) of compactified
Minkowski space MZ.' We discuss the factorization of
these groups in terms of Lorentz group (SL(2, T)),
dilations, translations, and special conformal trans-
formations.
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Notations
The Minkowski scalar product is
x,v e IR* (= : M%)

x'y:ngy:xoyo—Xy: (2- 1)

The basis of Pauli matrices

{og, 0t =12, 0y, 0y, 03}:{(1 1)’ (1 1) ’(i _i>’ <1 "1>}
(2.2)

establishes a linear isomorphism of IR* with the set
H(2X2) of Hermitian 2X 2 matrices, resp. of €% with the
set €(2X2) of all complex 2X2 matrices:

£ =1{x0,X) I x:=%," 1 + X0, (2.3)

inverse map: B 1~ B ; (B), = 3tr(Bo,).
The covering homomorphism A: SL(2,C)— Lorentz

group L! is defined by the following action of SL(2, C) on
H(2x2):

SL(2, C)XH(2X 2) — H(2% 2): (4, B) — ABA*
(A4)= L]

& ABA*=A(A)B (2.4)

The space inversion “: (x,, X) I~ (x,, — X) in €* induces an
inversion of 2X2 matrices, denoted by a hat:

B=(by"1+b0) B =(b,-1-bo)=(0,B0,)7,

(2.5)
(a‘b) {d -b
c d/ \-c a )
We note the rules [4, Bz €(2x2)]:
N A ~ ~ "
A+B=A+B, AA=AA=(A-A)-1=detd ],
AB =BA, detA #0=> A1 = A (detA)?, (2.6)
A=a, A-B =1trAB,
trA = trA, det(l+A)=1+trA + detA.

The group SU(2, 2) is, in standard matrix realization,
U(2,2)=1{G = GL(4, Q) |G“IG:I}}
SU(2,2)=1{G = U(2, 2)| detG=1}

I= (l —z) - (UD -—oo>'

We shall use 2X 2 block notation for 4 X4 matrices.

2.7
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Another realization of SU(2, 2)® is more convenient to
our purposes: We perform a similarity transformation

G~ UGU"' with v=-L (l 'l) (unitary). (2.8)

va o \il il
The formula reads in block notation
(A B) 1 <A-—B—C+D -i(A'+B—C—D)>

CD 2 \i(A-B+C-D) A+B+C+D
R S
- . 2.9
(7 o) 2.9

The invariant metric transforms into

J:UIU*:(il "l) (2. 10)
Subgroups of SU (2,2)

From now on, [S] U(2, 2) will be considered in J

realization:
[s]u(2, 2)={Ge GL(4,€)|G'JG=J, [detG=1]}. (2.11)

As will be shown at the end of this section, the action
of SU(2, 2) on the (minkowski) space H(2X2) is as
follows:
R S "
¢=(7 o) B:Q) i~ (RB+S)(TB + Q)= C G(b).
(2.12)

G + (G is the covering homomorphism of SU(2, 2) onto
the conformal group C(M?).

With (2. 11) we obtain the matrix representation of the
Lie algebra [s]u(2, 2) of [s]U(2, 2):

[s]u(z, 2):{(“

. _ba,) ‘b,ceH(2X2);ae¢(2X2);}

[tracR] . (2.13)

We are now ready to comment on some subgroups of
[s]u(e, 2):

G::{(’; Z)QU(z, 2) 'l s:r:o}
- {Z(A):: (A (A*)_l) 1A e GL(Z,C)}

E:=GnSU(2,2)={l(A)|detA = R}

L:={l(A)|detA =1}

D:={l(A)|A=expt, tc R}, d(t):=I(exp(t-1))

U:={l(A)|A =exp(it), t=R} [the center of U(2,2)]

Z:=UnSu2,2)=1{i,~1,-i,1} [center of SU(2, 2)]

(2.14)

These subgroups of U(2, 2) act on Minkowski space by
means of Eq. (2.12):
C UA)x=AxA* (2. 15)
The groups U and Z act trivially; the group L is
isomorphic to SL(2, @) and acts as the covering (2. 4) of
the Lorentz group: ( /(A)=A(A). Finally, the group D
is the dilation group of Minkowski space: (” d(t)x
= exp(2t)x.
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The group E is the product LDZ; it is the union of two
components (detA = 0), and each I(A) = E has the unique
decomposition

IA)=1(A") d(t)e
with

- yl:detA>01 _ 1/2
Z”)e—{i:detA<0}’(SgndetA) ,

D2d(t), et=|detA|'/?,
L>UA"), A'=A-exp(-1) et SL(2,T).

(2.16)

We introduce two four-parameter Abelian subgroups of
Su(2, 2):

T::{t(B)=<(1) f)zexp(g oB) ;BGH(2XZ)§’

S::{S(B): (; (1)) =exp ((1)3 g) lBeH(ZXZ)}.

(2.17)

The group T induces Minkowski space translations:
CHb)x=x+p. S acts as the “special conformal group”
on Minkowski space: With the help of the rules (2. 6),
(2. 12) we obtain (x ¢ M*)

CsB):xt—[x + (x - x)y]/w(x, ) (2.18)

with y:_ﬁ_ and w(x, y):=1+2(x-y)+ (x+x)(v - ¥).

Finally, we consider the two subgroups of “triangular”
matrices:

P::{(I; Z) 8U(2,2) ’ T:O},

K::{(ﬁ 2) = SU(2,2) 3:0},

Some properties of these groups:

(2.19)

a. P is the semidirect product P=T (X E; each ele-
ment of P has the form

A B oeny

b. P={Gec SU(2,2)| ((G)(x) exists ¥ x = H(2X2)}, so
that P is the maximal subgroup of SU(2, 2) leaving in-
variant the uncompactified M*%, The image of P under
(C is the Poincaré group including dilations.

a’. K is isomorphic to P; K =S(XE (semidirect
product); each element of K has the form

A
(B (2)_1> =5§(BA"!)-1(A) (unique decomposition).

(2.21)

b’. K={GeSU(2,2){((G)0)=0}, so that K is the
maximal subgroup of SU(2, 2) which leaves the origin
O = M? fixed, i.e., K is the little group of O. ('K con-
sists of Lorentz-, dilation-, and special-conformal
group,

Factorization of SU (2,2)

We add some remarks on the “standard factorization”?
of SU(2,2). We wish to obtain a decomposition of any

G. Post 25



G = 8U(2, 2) into a product of a “special conformal
transformation” (= S) and a “dilation-Poincaré-trans-
formation” (e P).

The ansatz

G_AB>_110><'B'>_<A' B’
“\C D/ T\K 1/\0 A’/ "\KA’' KB'+A’
(2.22)
shows that the decomposition exists iff A=A’ is in-
vertible. In this case, it is also unique: A’=A, B'=B,

K =CA™, Collecting the formulas (2. 22), (2. 20) and
(2. 16), we have the following:

Result: The matrix G=(4 8)=8U(2, 2) can be decom-
posed into the product

G =s(K)#(H) I{A) = s(K)t(H)I(A")d(t)e = STLDZ (2. 23)

iff detd #0. The factorization is unique, K =CA™ and H
= BA* are Hermitian matrices, and A’,t,e are given by
Egs. (2.16).

With the homomorphism (7, this decomposition carries
over to the conformal group; the factor Z disappears.
Thus, only “almost” every conformal transformation
has a factorization into special conformal transforma-
tion, translation, Lorentz transformation, and
dilation (in this order, and unique).

Here is an example for an SU(2, 2) matrix which can-
not be decomposed, because its submatrix A vanishes:

0 -1 . X "
2=(73')s (Czo=- i e,

(2.24)

The set N={detA =0} of “non-parametrizable” matrices
has the codimension 1 in the SU(2, 2) manifold and
separates the two domains detA= 0. N does not form a
group, nor does SU(2, 2) \ N. We get from the de-
finition (2. 19):ne N2npc NV p= P, Thus N is a union
of cosets n+ P. Indeed, the standard factorization is
just the attempt to parametrize the coset space SU(2, 2)/
P={G P} by the special conformal subgroup S (=R%),
each s =S representing its coset s - P. But the coset
space is compact and is thus not completely covered by
a coordinate system IR%.

By analogy, the coset space SU(2, 2)/K is not covered
by the translation group 7. In fact, SU(2, 2)/K is
exactly the compactified Minkowski space M%, and T is
the ordinary part of it. The homomorphism ( :SU(2, 2)
—~ C(M?*) results from the natural action of SU(2, 2) on its
coset space by K. In particular, the formula (2. 12) is
read off from the following ansatz, concerning those
cosets which contain a representative element of T':

(52) (1) ) o e

3. THE LADDER REPRESENTATIONS OF U (2,2)

We shall recall the work of Mack and Todorov ® on the
ladder representations of U(2, 2), considering the group
itself instead of the Lie algebra.

Notations and definition

In the space €2 of two complex variables (zy, 2,), 2,
=u, +1v;, we have the differential operators
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1 . = 1
ajzf(au]—_zavj)a 0, = E(a

We introduce

2, - [z 3, - (7,
= r = = 0= d=\| = .
¢ <Zz> ‘ (Z2>’ (a:a), ( (82

The corresponding rows will be denoted by 27 =(z,, z,),
etc. We also define the four-column ¢ = (%) and the
four-row @ =(-37, zT). The ladder representation of
U(2, 2) can now be defined on the space L*€?) of square
integrable functions on €2, with respect to Lebesgue
measure. U(2,2) is considered, for the moment, in a
matrix realization relative to the metric J’=(} }). Then
the ladder representation® assigns to each matrix #’ of
the Lie algebra u(2, 2) the following differentiation—
multiplication operator on L¥C%): / "(W):=PW¢. /' is
a skew-self-adjoint representation of u(2, 2), as follows
from the construction of ¢ and @ discussed in Ref. 5.
See also Ref. 10 for general u(p, q) ladder representa-
tions.

We prefer the metric J [(2.10)], which is unitarily
equivalent to J’:

J=VJ'V* with V= —— < 0 (1—2)l>_
oY (1+:) 0

So h=Vh'V-! is our Lie algebra element in the J metric,
and we define / (h): =/ '(k’)= @V 'hVe. Explicit calcu-
lation with Eq. (2.13) gives us the following formula,
which we shall take as the definition of the u(2, 2) ladder
representation:

L(h:(? ba“)) = 2Tad + 0Ta*E +izTh7 +id%cd. (3.1)

Exponentiation of /

First, we prove that / can be exponentiated to a
unitary (reducible) representation of the matrix group
U(2, 2). It has been shown,'® by an application of a
theorem of Nelson, that the ladder representations of
any u(p, q) algebra can be integrated to unitary rep-
resentations of the universal covering groups U(p, ¢).

Since I—J(p, q) = SU(p, ¢)X IR, they generate in particu-
lar representations of SU(p, ¢). Now the covering
7 :SU(p, ¢) — SU(p, ¢) has been investigated by Schaaf, !
and it maps essentially a real line onto a circle.

Thus, in order to prove that / is a representation of
SU(2, 2) itself, it suffices to show exp[27/ (I')]=1, where
T is the generator of the above-mentioned circle sub-
group. In standard metric (2. 7) this subgroup is!!

<ex8(il) (1)) 0

0 (expg— i) (1)>

exp(Tt) =G(t) =

We obtain in J metric

10
r= (_ 100) (000> [by Eq. (2.9)],
0 0

[ (Dy=i(u? = 22, + % ~ $2%) by Eq. (3. D).

v
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Since this is essentially the Hamilton operator of a two-
dimensional isotropic harmonic oscillator, we can
easily find a complete orthogonal set {fnm: |7, m, &,
=0,1,2, -} of L¥@?) so that / (T)f,,,=in+m +1)f, ..
This implies exp[27/ (I')]=1 and thus finishes the proof
that / generates a representation of SU(2, 2). The ex-
tension of this property to U(2, 2) follows from the
explicit calculations below. O

Next, we start from Eq. (3.1) to obtain the explicit
form of the exponentiated ladder representation (also
called /) on several subgroups of U(2, 2).

G: The group G c U(2, 2) [Eqs. (2.14)] is the ex-
ponential of the Lie algebra {(§ °,)}. We give the result

[/ KAYflz =detA f(AT2),
AcGL(2,Q), 2cT?, fc L. (3.2)

This is obviously a unitary representation of G, and the
calculation of the corresponding Lie algebra representa-
tion (using one-parameter subgroups) produces exactly
(3.1), b=c=0.

T: For the translation group T [Egs. (2.17)], the
definition (3. 1) yields immediately the following unitary
representation:

[/ #(B)f )z = exp(izTBz) f(2)

S: In order to treat the group S [Egs. (2.17)], we
introduce the unitary automorphism 7 of L%(€?), which
is induced by the Fourier transform in @2:

(7/ w=(1/21) [ dz f(2) expli(z, w)],
(F)z=(1/207 [ aw f(w)exp[-i(z,w)], z,w=C?,

(3.3)

(z,w): =RezTw,

(3.4)

The following operator identity holds !?;
FUITB)F =2T(~ 1Bz [BeH(2x2)]. (3.5)
We can now combine Eqs. (3.1), (3.3), (3.5) and obtain

s®)= (5 (1’) :eXp(;’ 8) ~ [ s(B)=F[£t(- 1B)1 7

(3.6)

This unitary representation of the subgroup S can be
written as an integral transform, if the submatrix B is
nonsingular, that is, B spacelike or timelike (see Ref.
12):

[/ s(B)Ylz=(1/2n) [ dw fw)L ,(z - w)
with L ;(2): = — 4(detB) " exp(izTB*z). (3.7)
Finally, we add some remarks.

a. The Fourier transformation 7 itself is the rep-
resentation / of an element of SU(2,2): 7 =/ (Z,) with
[see Eq. (2.24)]

Z,=2, - d(log2) = <(2’ ‘OE) —H=3)s(2)=1).  (3.8)

A proof is obtained by applying (3. 3) and (3. 7) to (3. 8).
b. The following relations are easily verified:

FULUAN T =L WA,
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FUUB)F =/ s(-4B). (3.9)

Decomposition of the (reducible) representation /

The space L*(T?) is the direct sum of orthogonal sub-
spaces H,:

Lz((l:z): 23} Hn
nc g

Hy:={f € L¥C?)| f(exp(it)z) = exp(int) f (2)

(n::o,:tl,:tz...)

teR, ze @}

(3.10)

The H, are invariant under the representation /, since
f(z)— f(exp(it)z) is easily seen to commute with the
operators / l(A), [ t(B), and 7, which generate the
whole set / [U(2, 2)]. We denote the restriction of [ to
H, by [ » and call the collection of / , the ladder series.
The irreducibility of the representations / », of U(2, 2)
is shown in the next section.

We classify the / , according to their behavior with
respect to the center Z ={i, %, %, %} of SU(2, 2). Equa-
tions (3.2), (3.10) imply / ({)f(z)= - f(iz),

feln=> [o(D)f(&)==i"f(2).

The group SO4(4. 2) occurs in a sequence of homomor-
phisms

SU(2, 2) — SO, (4. 2) — C(M¥)
with centers {+1,+4}—~{1,-1}—{1}

(3.11)

Therefore, (3.11) leads to the classification:
a. Fornc2Z+1,

[ » is a faithful representation of SU(2, 2).
b, Forn=41Z,

[, induces a faithful rep. of 80,4, 2).
c. Forncz4Z+2,

[, induces a faithful rep. of C(M?),

(3.12)

4. EXTENSION OF THE m = 0 WIGNER
REPRESENTATIONS TO SU(2,2)

Following the lines of Mack and Todorov, ® we obtain
the realization of / , as a continuation of the irreducible
unitary representation u, of the inhomogeneous SL(2, T),
belonging to the mass m =0 and the helicity x = - n/2.
The integral transforms representing special conformal
transformations are calculated.

Notations, definitions

QZZ{QO,D)ER4‘[>O>0, P'PZO} (4-1)
is the zero mass shell (forward light cone), an orbit of
SL(2,C) [Eq. (2.4)).

Definition: E’: @ - C(2X 2):w I~ 2ww* =2 <w11,_01 “’ﬂf’_z) .
Wy, Wothy

(4.2)

E’ maps @*\{0} onto the set of rank-one Hermitian

2X2 matrices with positive trace, that is to say, E'w
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=w"0,w is a light vector = Q. By Eq. (2.4), A =SL(2,Q)
= E(An)= AA)Ew.

E’ induces a bijection of the set of orbits exp(fIR) -
(we @2, w+0) of the group U(1)={exp(it)- 1,1t =R}, on-
to @, since E'w, =E'w, < w,=exp(iflw, (0 << 2r). In
the ladder representation, A = SL(2, €) acts on €2 as
follows: z1—~(AT)'z, By Eqs. (2.5)—(2.6),

A= GL(2,C)=> (detA)(AT)* =S1AS

with unitary S = 0 -1 (4.3)
1 0
For this reason we define a modification of E’:
Definition: Ez=E'(8z) (z=(C?),
NN o~
Ez=(E'z]T =27 27, Ez=(2T0,Z,~270%),
Az GL(2,C)=>E((AT)z) = |detA | 2A(Ez)A*
(4.4)

We introduce parameters for & and €2 in the following
manner; We select a fixed point k= @ and a family of
transformations

{f, = SL(2,@) | p = @, Af,(R)=p}. (4.5)
Explicit choices:
k= (%7 0’ 0’ %)’

1oy L, . 1 (1

k=0, +0,)= (0 0) =E'w, with w,:= R (0> , (4.86)
fo=dy+b, i p=(po, D)=y (1,D) (|B|=1).
b"o is a boost which carries k into (p,, 0,0, p,):

b%: diag({2p, )2, (2p,)7%) = SL(Z, C). (4. 7a)

dy is a rotation e SU(2)] carrying the 3 axis into the
direction p. If 0<g<m, 0 <¢ <27 are the polar co-
ordinates of p [+ (1,9, ¢)], two possible choices for d;
can be given:

d,(P) = exp(— io, - @) exp(— %i0, * 9),
dy(P) = exp(— Lio, - ) exp(— %i0, - 9) exp[5ioy(~ ¢)].

(4. 7b)
We define

~ (4. 8)

z,0=5"w, Ez,=p.
{w,} is a representative family of the space of orbits
C€%/U(1). With an additional parameter 0 < < 27, we

have a coordinate system of (almost) the whole of @Z:

w =exp(ifw,—~ (B, p)=(0,2mxQ, Ew=p
z=S"w =exp(if)z,, Ez=p. (4.9)
Explicitly, if d,(p) is chosen
21\ _ expli . explip/2) sin(%/z))
<z:> = exp(iB) p;/? (_ exp(—i¢/2) cos(9/2))"

Finally, we recall'® the Wigner mass-zero representa-
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tions u, of the inhomogeneous SL(2, €) {ISL(2, €)= T (XL,
see (2.14), (2.17)], belonging to helicity x = £/2: The
representation space is L*(Q;d%/2p,), and, up to
equivalence, u, is described as follows [F < L3(Q)]:

Translation {(B): u,t(B) F(p) = exp(iBp) F(p),
A= SL(2,Q): 0, [(A)F(p) =[Q(A, p) P F(A(A)?p).

(4.10)

Here, @ has values in the complex unit circle, satisfies
the relations

Q(AA,a p) = Q(A’ p)Q(A” A(A)-lp),

and can be implemented by a unitary representation A
of a little group:

ke G, ={A=SL(2,C)|A(A)k =k} (little group of k)
(4.12)

Q(A, ) =A(f;*Af y4y1,) Wwith a family {f,}, Eq.
(4.5).

Explicitly, with the choices (4. 8) of & and f,, we get

(4.11)

1 z .
Gk:{g”:<0 1) - exp(- $i0,- @) z = €, 0<<P<47T},

Alg,,) =exp(-ip/2). (4.13)

Remark: 1f ISL(2, T) is enlarged by the dilation group
D [see Eq. (2.14)], then the most general extension of
(4.10) is!?

10, 1)F(p) = exp[26(1 + i5)] Flexp(20)p) (5= R) (4.14)

The new continuous parameter 5 arises from the ex-
tension of the representation A of the little group.

Reduction of / , to ISL(2,€) (-~ POINCARE GROUP)

With the parameters (4.9), the integral in €% can be
written

27 d3p
f dzydz, = f;‘/o‘ dp f —2—[)—0 (z = exp(iB) - z,).

(4.15)
This leads to the following characterization of the
spaces H, [definition (3. 10)}:
feH, < IFcL¥Q; d’p/2p,): f(2) = F(p) exp(inB)
(F(p)=1(z,)]. (4.16)

(4. 16) establishes an isomorphism f1— F: H, — L%(Q). In
particular,

feHy gmH=>[F gdz=(n/2) [ FGd®p/2bo)" b ,p-
(4.17)

We will now calculate the ladder representations / , of
the subgroups T, L, and D, acting as unitary operators
on L3(Q).

a. The group T of translations: / ,¢(B)f(z)
—exp(i 2TB?) (f =Ha),

z =exp(i)z,=2TBz = tr(BzzT)= 1tr(B L{;) =B-p,
with (4.16)=>/ , (B) F(p) = exp(i Bp) F(p). (4.18)
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b. The group L [=SL(2,T)]:
L, UAf(2)=f(ATz) [AesSL(2,0)]

=/, UAYF(P) =/ , I(A) f(2,)=F(ATz,).

Because of (4.4) and (4.9), there is a phase factor
Q(A,p)(1Q1=1) such that

Arzpz[é(Ay p)]-le(A 1 (4. 19)
=/, LA F(p)=[Q(4, p)I™ F(A(AY?p). (4. 20)
c. The group D of dilations:
L, dt) f(2)=exp(2¢) f(e*z) by (2.14), (3.2)
=/, d(t) F(p) = exp(2t) F(2tp). (4. 21)

We shall now prove: (4. 18) and (4. 20) are the same as
the representation (4. 10) of ISL(2,T), with n=—2x.

We only have to show Q:é. For convenience, we
shall switch to the family w, (4. 8). Then (4. 19) reads
[see definition (4. 3)]:

A, =Q(A, P Wy (4115
< Q(A’ p)wk= (f;lAfA(A )-lp)wk! since Wy =wak'

Therefore, (NQ(A, p) is just the phase produced by the
little group G, [(4. 13)] when acting on the spinor w .
=(1/¥2')(}). 1t is easily seen that it coincides with 4,
defined in (4.13). Thus @ =, by Eq. (4.12). "

The proof is independent of the special choice (4. Ta—
b) of f,; another set {f,} simply redefines the representa-
tive family z, andathe isomorphism fi—+F, In Ref, 5,

(4. Ta—b) with d,(p) is chosen (implicitly).

Result: The ladder representation / , of SU(2, 2) is an
extension of the (already irreducible) mass-zero rep-
resentation with helicity A = - n/2 of ISL(2, €). We have
[Eq. (3.12)] a representation of C(M*) if A=21, +3, -,
of 80,(4,2) if A=0,+2,+4, -+, or only of SU(2, 2) if A is
half-integer. This classification was discussed by
Castell. 4

As to dilations, we note that / , (4. 21) corresponds to
the choice 5 =0 in (4. 14), that is, the trivial extension
of the little group representation. This is in fact the
only choice compatible with the representation of the
special conformal generators. '°

Special conformal transformations on L2 {$2)

We shall first deal with the representation of the in-
version Z, [Eq. (2.26)], which is essentially the Fourier
transform on L% @?), By (3. 8) we find

[ Z,f(w)=(1/21)*4 [ dz exp[2iRe(zTw)]f(z). (4.22)
The real bilinear form Re(zTBw) [z,w = @2, Bc H(2X 2)]
will be evaluated in the coordinates (4.9): (4. 23)
z=z,exp(ia), 2,7BZ =:|z,7Bz |- expl-i¢(B,p,q)],
w=2z_exp(if), |z,7Bz |*=1}tr(pBqB)

[derived with (2. 6), (4. 8)]
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= Re(27Bw) = [tr(pBgB)*/? cos[a - B - ¢(B, p, q)].

(4.24)

We can now calculate / ,Z, on L3(Q): Let fc H,, i.e.,
f(z)=F(p)exp(ina). Then

LaZ,F(@)=[ 42, f(2})

2 a3 2r
2(217) /F(p) —2’%;'/; da exp(ina)

X exp[2i Re(z 7Z,)].

By Eq. (4.24) with B=2: 2Re(z7z ) =7, cos(a-¢,)),
where 7,,:=[2(pyq, + Pa)I'/%; and ¢, is the polar angle
of z2,"z . We use the following relations for Bessel
functions!®:

2r

21—" da exp{i[na + r cos(a ~ ¢)]} = i"exp(ing) J (v)

(4. 25)
(r>0, =R, nc £)
1 a[2p
=, 2P0 =5 7 [ £E F0)
Xd, V2(peg, + PQ) (exp(ip,,))".  (4.26)

The factor exp(i¢,,) depends on the choice of the f, in
(4. 5). If we take (4. Ta—b) with d () (contrary to Mack—
Todorov), it can be expressed in terms of the elements
of the Hermitian matrices

fu v _(* VY. o (o, )= un’ + vy’
B\s ¢ ) 17\s v )7 OXPUO =T
(4.27)

The mass-zero integral transforms given by Castell in
Ref. 17 are exactly the same as (4. 26)—(4. 27), with
n=-2x. The integral kernel R discussed by Kastrup
and Mayer ®* is obtained in the special case A =0, if

[ +Z, is combined with the space inversion (x, X)

I~ (%o, = X) [in L¥(8): F(p,, p) = F(py, — p)]. R represents
the inversion x b — x/x »x in M*, which is not an ele-
ment of the connected group C(M*).

Second, we shall treat the group S acting on L(Q), but
only those special conformal transformations s(B) which
have a regular matrix B (that is, B-B#0), because of
formula (3. 7). Our task consists in restricting (3.7) to
H, and calculating the corresponding integral transform
in L3(). The calculation of [ «S(B) is very similar to
that of / ,Z,, and so we omit the details:

Since B and B are Hermitian, we get from (3. 7)

L (2 —w)= - 4(detB)*
X exp{i[zTB"1z +wTBY%w - 2 Re(zTB"'w)]}.

With the use of the parameters below (4. 23) for z and w
and of Eqs. (4.24)—(4. 25) for the expression

-2 Re(27B"'w), the following result for / ,s(B) is ob-
tained:

L ,S(BYF(q)= [ (d®p/2p) F(p) LE(p, q),
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=, (exp(ia))".

exp(ia) is the phase of - z,7B™'z , depending again on
the choice of {f,}. We recall that s(B) acts on M? as the
conformal transformation

xl—[x +(x- x)é}/w(é, x).

Thus, for all “nonlightlike” special conformal trans-
formations, the series of ladder representations / is
given by the integral kernels (4. 28) in momentum space.

5. CONFORMAL TRANSFORMATIONS OF
MASSLESS FREE FIELDS

The classical and quantized free fields on Minkowski
space which correspond to the mass zero representa-
tions of ISL(2, €) are considered. Their transformation
under the special conformal group S is investigated.

Conformal transformations of classical fields

The conformal transformation properties of the ir-
reducible Minkowski space spinor fields will be re-
viewed first.®

We define the space §,, of classical spinor fields as
the set of all (generalized) functions ¢ on M* with values
¢(x) in the (25 + 1)(27 + 1)-dimensional representation
space of the irreducible representation D, of SL(2, €).
With respect to our A [Eq. (2.4)], D, is defined as

D,:=D,@D,, 7s=0,341,3, -,
D (A)=D((A")"), A=SL(2,0),

Dr(%ok) == iD,("' '%iok)y %Uk(—: Sl(zy‘m)’ = %iokC—: SU(Z).

The last equation says that D, of the Lie algebra sl(2,C)
is obtained by antianalytic extension from the well-known
representations D, of su(2).

The usual Poincaré transformation behavior of spinor
fields is given by the following (highly reducible) rep-
resentation R, of ISL(2,C) on ¢ :

R s (HBY(AN¢(x) =D _(A) [¢((A)*x - B)] (5.1)

R, is defined by “inducing” from the representation D_g
of the little group SI(2, €) of O = M*%, We want to extend
R, to the conformal group. '® We start from the little
group of O with respect to SU(2, 2), which is the group
K of Egs. (2.21)—(2.23). Which are the possible ex-
tensions of D, from SL(2,C)=L to K? The group law
forces us to represent S K by 1, and the dilation d(t)
by a complex number exp(2z¢) (z < @), see Ref. 18. The
central element i can be represented by i™, where m
=0,1,2,3 is restricted because of D, (- 1) = (- 1)?(s):
r+s integer =2>m =0, 2,
7 + s half-integer=>m =1, 3.

Thus, we have the following class of extensions of D
[with Eq. (2.18)}:

D . (s(B){A")d(t)e) = D, (A" exp(2zt)e™. (5.2)
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By the use of translations, we induce the corresponding
extensions of ., that is, we define for G ~SU(2, 2)
(see Sec. 2):

(Rrszm G)O(x) =D, ({(= )G H{( C G) %)) ${(C GYx)).

(5.3)
This formula is not defined if ((  G)' x ¢M4.

For special conformal transformations s(B), (5. 3) be-
comes after decomposing the little group element
H~x)s(B)t({(1 -~ Bx)™) as in Eq. (5.2):

- ()8
Rysem SBIS(x)= |w]*emD, (?wl%gz) ¢(x 2] >’

W

w:w(—f_?,x):det(l—LcB) [see Eq. (2.20)],

e:{l:w>0 =(sgnw)!/?, (5. 4)

t:w<0
The massless classical fields

On the one hand, we have the ladder representations
[, of the conformal group SU(2, 2), on the other hand
the conformal transformation properties (5. 2)—(5.4) of
spinor fields. Can we single out spaces of conformal in-
variant free fields in § ,, i.e., can / be imbedded into
some of the representations R, .7

First, we recall how Weinberg® solved the analogous
problem for the Poincaré group ISL(2,C): Are there
subspaces of ¢, which obey “free massless field equa-
tions”, or, more specifically, which belong to the ir-
reducible representations u, of Eqs. (4.10)? Is u,
“contained” in R for given values (A, 7, s); i.e., does
there exist an injection L*(Q) — ¢,  such that F1~ ¢
>u,Fi—R ., ¢?

We try an integral kernel ansatz for the linear map
F1—¢. The translation behavior of Egs. (4.10), (5.1)
restricts it to the conventional form

1 3/2 d3p
Pl = (271) j 2P,
The (27 + 1)(2s + 1)-component kernel function # must

obey the following law, which is equivalent to the correct
SL(2, €) behavior of F1— ¢:

u(p) =D, (AN, (A u(p)] [A=SL(2,T)).

The complex conjugate representation u, of , is defined
by conjugating the unitary multiplicators in (4.10). u,
is understood to act on all components of u(p). (5.6)
follows easily from the unitarity of u, and the definition
of the scalar product in L3(Q).

exp(=-ip - x)u(p) F(p). (5.5)

(5.6)

Since u#, was induced from a little group G, with a
family f,, the function « is completely determined by its
value at the point &:

u(p) =D [ f,)u(k) (5.7)
and the problem (5. 6) is reduced to an eigenvalue
problem for G,:

w(k)=D_(g)NBg, ) u(k) (g, G,)- (5. 8)

The solution u(k) exists and is unique up to normaliza-
tion, iff s-» =x. This was shown by Weinberg; we denote
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the resulting function (5. 7) by u,,(p). With the usual
basis of eigenvectors of D_(}0,) for the representation
space of D :{e,®e,l~7 <m <7; -5 <n<s}and with 2
=(3,0,0, 2), we obtain u (k)=e_, . Using the family
f, of Eqs. (4.7) with 4,(p), we get in the above basis

(U5 )l D) = (2D,)™S exp[ = i0(m + n)] A (9) A A9)

[p= (86,9, P (5.9)

Result: The mass-zero representation u, is contained
(only) in the spaces of fields ¢,  with s —»=2 [Egs.
(5.5), (5.9)]

We treat now the same problem for SU(2, 2): Can the
ladder representation / , be imbedded into a given field
representation 3 .. ? As discussed above, the restric-
tion to ISL(2, €.} alone fixes the mapping F - ¢ and
yields the condition 7= — 2\ =2(r - s):

-2 [ 4
(5.10)

There are further constraints derived from other sub-
groups of SU(2, 2): The group D of dilations fixes the
number z in (5. 2). z must be chosen so that the analog
of (5. 8) for the extended little group is still valid; we
state the result!?:z =~ (1+»+3s).

u,.(p) exp(- ip - x) F(p).

The central element i fixes the number »: From (5. 2)
and (3.11) we get m=n+2=2~-2x=2(1++-s). Thus,
the set of conditions is

n=2(r-s) (n=<22),

z=~{1+7+s), {5.11)

m=2(1+7r~s),

The previous discussion suffices to determine the
allowed £ o m =11 s+

We shall now prove that /  is indeed contained in the
representations 2, [Eq. (5.12) below] if n=2(r - 5).
Since this property is satisfied by construction of (5. 12)
for the subgroups ISL(2,€), D, and the center, and
since these generate SU(2, 2) together with the group S,
it is sufficient to give the proof for the special conformal
transformations. The infinitesimal conformal trans-
formations belonging to (5. 12) are given in Ref. 18, and
for these generators it is shown in Ref. 5 (in a quantized
version) that they are obtained by the transformation
(5. 10) from the special conformal generators of the
ladder representation / ,. Since the group S is Abelian
(=IR*), the compatibility is also satisfied for the finite
group elements, and the proof is finished.

Result: The map (5.10): L*(Q)— §__ imbeds the ladder
representation / of S5U(2, 2) into all the Minkowski
space spinor field representations R, with 2(» - s)=n,
extended to SU(2, 2) by the laws

Res t(B)(x) = p(x = b)
R ns HA) ¢(x) =D, d(A(A) %) [A e SL(2, D)),
R s d(t) d(x)=exp[26(= 1 - »~5)]

d(exp(~ 2¢)x) (dilations), (5.12)
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Ron BV (5) =[] (s« D, (122 )

><4)(x (x- x)B>

[special conformal tr, w=w(~ é, x), (=1)1/2=4],
The transformations (5. 12) thus leave invariant the
momentum spectrum . Though the conformal trans-
formations act as integral transforms in momentum
space, they are transformations of the local “differen-
tial geometric” type in Minkowski space.

The fields defined by (5. 10) belong to positive fre-
quencies only. But it is also possible to imbed negative
frequency parts into fields transforming with (5. 12):
We define the series of starred ladder representations
of U(2, 2): L* = L .n» The bar means conjugation of the
factors and 1ntegra1 kernels in (4. 18), (4.20), (4.21),
(4. 26), (4.28). Calculation gives

LY¥UA)= [, UA)
[_’,‘;t(B): Lnt(—B)a
L:S(B):L"S(—B).

[A=GL(2,Q), detA = R],

{5.13)

With a function G(p) c L*(R) transforming with / *, we
can define the negative frequency field

3/2
¢>"’(x):<§1;) f —pﬁ u,(p) exp(ip - x) G(p), (5.14)

which also transforms with £ . like the positive fre-
quency part (5.10), if the same condition #n=2(» - s) is
satisfied. This is easily seen for the Poincaré group
and the dilations, and will be shown for the group S: In
an abbreviated notation, with the L%(§2) scalar product,
we have

X =ty [ H=X)F),
¢ - )(x) = <t—¢rs’ L n t(£)6>’

F transforming with / ,

G transforming with / ¥,

R ys S(BYO W x=(ut,, [ [H~2)s(B)F)
=(t,e, [ AU=2)sBY( CsB) %)}
LAH=1C sB) )R

=D(B, 2)¢ “([( s(B)]'x) [see (5.12)),

S's(B)g xi=(u,,, [,[H{x)s(~ B)IG)
=(t,s, [ 1HDs(=B[( s(- -
X [t~ s(= B (- x)6)
=D(- B, -x) <i>“ ([C s(B)'x)= R, s(B)p~'x,

since = [( s(= B)]* (- x)=[( s(B)]"*x, and D(~ B, - x)
=D(B, x) [from (5. 12)].

Result: The representation /  can be imbedded into
R »s With positive frequencies, and /* into £, with
negative frequencies, if n=2(r -s), with the help of
definitions (5.10) and (5. 14).

Massless quantized fields
Finally, we consider quantized free massless fields

of the type of Weinberg’s 2(2» + 1)-component fields.
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We start with a set of creation and annihilation
operators with canonical (anti)commutators:

{a(p); a\(p) pe @ A= Z/2},

la,(0), @ (")), =05,y (20,)5%(P = p'). (5.15)

In particular, we write for Fe L*Q), transforming with
Ln(==2)\):

F= f %—I)!;F(p)a;(p)lo>:(forma11y) (F,a3[0)  (5.16)

with a conformal invariant vacuum |0). We denote by U
the representation of SU(2, 2) in the Fock space be-
longing to the series of ladder representations, that is,
generated by the a;(p) and a,(p) out of 10).

Then the following SU(2, 2) transformation behavior of

the operators can be inferred from (5.16) (/ , is unitary):

U,a,()YU 7=/, (&Ma,](p), gSU,2),
U, a0, =/, (eNa () =1/ % &Haz) ().

il

(5.17)

For the special conformal group, these are nonlocal
transformations. It is seen from the Result below Eq.
(5. 14) that we can construct two operator fields (n=
- =2(r-s)]

3/2 3.
0= (55) [ G uatr) eml-ip- ) (o)

(positive frequencies)
1 3/2 3. .
X Nx) = (g) f %;E ug,(p) explip - x) a;(p)
o]

(negative frequencies)

with the transformation properties

U, 00U =R g e W)x), geSUER,2),

U x 0 U =R, g x ) (%),

In order to obtain fields with all frequencies, we must
add to these two fields ¢ and x  the fields of opposite
helicity ~x:

/
O (x) = (51;) o f %:f u, (p) exp(ip ° x) a2, (p)

(transforms with 2 ),
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1 3/2 3
X Ax) = (———2 n) d—z——pp u, (p) exp(—ip - x) a_,(p)
0

(transforms with 7).

Then the combined field
@ ELo M +np )
(X) :(ELRX(")‘HTfXH v Ep,p M €€

contains the helicities A and —x, both positive and
negative frequencies, and transforms reducibly ac-
cording to the sum R . @ R,, under SU(2, 2). In the case
A >0 and (7, s)=(-21, 0) we obtain Weinberg’s 2(2» + 1)-
component fields. They are thus not only Poincaré-
but also conformal-invariant.

The difficulties with differently transforming positive
and negative frequency parts (Swieca—Vdlkel'®) do not
arise in our case of three (odd) space dimensions.
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The generalized Wiener—Feynman path integrals are defined by the primitive mappings of the canonical
Gaussian measure on a Hilbert space of real square integrable functions. The expressions of the covariance

of the pro (pseudo) measures are found to be form covariant. The measures known in the literature by

names as Wiener—Feynman and Uhlenbeck—Ornstein appear as special cases of no particular remark in

our general definition. The connection of the primitive mapping with the general class of linear Cameron-Martin

transformations is established.

I. INTRODUCTION

A definition of Feynman path integrals as a image of
the canonical Gaussian pseudomeasure on a Hilbert
space of real square integrable functions defined on the
time interval T ={0, T] by means of primitive mapping
has been given recently. ' This definition leads to new
techniques for computing path integrals. The primitive
mappings given in Ref. 2 map the canonical pro (pseudo)
measure to Wiener—Feynman type of pro (pseudo) mea-
sures on the vector spaces ¢_, &, and ® of continuous
functions defined on the time interval T=[0, T']. It is
well known that Gaussian measures other than Wiener—
Feynman based on Markovian probability distributions
can be introduced for applications to physical problems
in quantum statistics® and quantum mechanics.* The aim
of this paper is to define the most general Gaussian
pro (pseudo) measures by appropriate primitive map-
pings of the canonical Gaussian pro (pseudo) measure on
Hilbert space of real square integrable functions. The
measures known in the literature by names as Wiener—
Feynman, Uhlenbeck—Ornstein appear as special cases
of no particular remark in our general definition. The
remarkable result of this paper is that in the global de-
finition of pro (pseudo) measures by the Fourier trans-
form on the dual space all Gaussian measures are form
covariant. Therefore the integration with the general
Gaussian pro (pseudo) measures, which is needed for
generating a WKB type of evaluation of Feynman path
integrals, * can be done with the same ease as with the
Wiener—Feynman measure using the new techniques.

il. NOTATIONS AND DEFINITIONS

For the sake of completeness we recall here from Ref.
2 some pertinent definitions which we shall need in this
paper. The space &_ is the space of paths x defined on
(0, T] such that x(¢) — 0 when ¢ — 0; &, is the space of
paths x defined on [0, T') such that x(f) —0 when ¢t — T;
and & ¢ ®_ is the space of paths x defined on (0, T') such
that x(¢) -0 when ¢ — 0 and when { — T. The topology on
vector spaces ®_, &, ¢ is the norm topology induced by
the uniform norm lixil =Supix(¢)| for all ¢ in the range
of x. The integral with pseudomeasures w_ of a function
F on the space ¢_ is a complex number written sym-
bolically

K:f@ F(x)dw_(x). (1)

Its generalization to integrals with pseudomeasures w,
and w on ¢, and & related to w_ on &_ is obvious. The
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pseudomeasures are defined by their Fourier trans-
forms as functions on the dual space /| of &, which is
the space of bounded measures p on T:

Fon=exp(- 5 W), (2)
where variance W, is the quadratic form on /} defined by
W¥=j; du(r)deu(s) G,(7,s) (3)

in terms of the covariance functions G (7, s). The
canonical Gaussian pseudomeasure on a Hilbert space
/ of real square integrable functions on T is the
Gaussian of variance

KH)=(F, fy = [T s ar. @

We shall need the transformation properties of a
Gaussian pseudomeasure under linear mappings. Let
X and Y be two Hausdorff, topological vector spaces
locally convex; let X’ and Y’ be their topological duals.
Let P be a linear continuous mapping from X into Y and
P be the transposed mapping from X’ to Y’ defined by

(Py',x)=(’, Px). (5)

Let w be a Gaussian pseudomeasure on X of variance W,
The image of W under P is a Gaussian pseudomeasure
w, on Y, whose Fourier transform is

i . %
}wp:exp(— 3 Wp) with W,=We P, (6)
This transformation relation together with the equation

Jy F9)dwy(y)= [ FoP(x)dw(x) (M

form the basis of our formalism.

Iil. PRIMITIVE MAPPINGS AND THE GENERAL
PSEUDOMEASURE

Let D(0) be the solution of the differential equation

d®D(o)
do?

+p(0) D(0) =0, (8)

with the boundary conditions D(T)=1 and D’(T)=0. We
denote by /)(0) the solution of the same differential equa-
tion with the boundary conditions /)(0)=1 and /)’(0)=0.
Let P, P,, and P be the primitive mappings defined by

flo)do

D(o) ’ ©

t
P.: j/—~&. by P_f(t):x(t):D(t)f
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T flo)do

P : - & P = = y
by P00 =00 [ (10)
P:jf ~& by Pf(t)=x(t),
_ ‘ flo)do _ [ "
"")—D“’fo s -2 ( | )
tar \'[7 floydo
x(LD"’(a)) . Do) (1)

The transposed primitive mappings are defined from
Eq. (5) as

(P, f)={(u, P, f) (12)

and are easily found to be

P_u(0) 0) f 6(t = 0) D(¢) du(t), (13)

~ 1
P,u(0)=m fT 6(c=1t) D) du(t), (14)

D_({'—)[/T 8(r — 0) D(r) dus(7)

-(f )" [ o [ 555 )

(15)

The transformation relation Eq. (6) together with the
definition of canonical Gaussian pseudomeasure gives

W.=1(P, p(o)= [" do P_pu(0)- B, u(o). (16)

f)p.(O') =

Substituting Eqs. (13), (14), and (15) into Eq. (16), we
find

:j;d}l.(’}’) /;d“(s)c;(rﬁ S),

G, S)=D('r)D(8)(9(s ~r)f 17‘%) +6(r - S)f 55%;)

am

G.(7, s)“[)(r)[)(s)( s-r)[l)z(o) + B(7r ~ S)IDZ(U)

(18)

G(7, s):D(?’)D(S)<fTI)%(%)>-1[ 9(5*")< _L 17621(%)
([ %)
+ 8(v =) ( J;s 17‘%))( J;T 5%)}

To illustrate the computational steps leading to Egs.
(17), (18), and (19) from Eq. (16), we calculate the
variance W(u) on &:

Wo Pu= fo dU{D(IU) [J; (¥ = 0)D(7v)du(r)
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(19)

-(f F) [ woroo [ )}
_ [Tdumm jT autsrpis)| [ T - gfts - q)do
([ #) ) (L 5)
-2 ([ %) ([ #Fo) ([ )]
- faser f awonmon ([ 55)"

X[ﬁ(s-”)(jo‘r—])%((’—g)_) < !Tﬁg(%))
+ 8(r ~ 5) (J; 5%)([1'1_)%_?(;)}.

From our general results we next calculate the
particular cases of Wiener—Feynman and Uhlenbeck—
Ornstein pro (pseudo) measures.

Wiener-Feynman

This measure is defined by D(0)= /) (0)=1. The
primitive mappings for this case are obtained by sub-
stituting D(0) =1 in Egs. (9), (10), and (11):
P4~ by Pf(t)=xt)= ' f(o)do (20a)

P,: j{—&, byP f(t)= x(t)_f f(o)do (20b)

P:jy —% by Pf(t)= xt)—[f O’)d(f—-—ff 0)da. (20¢)

The covariance G,(7, s) follows from Egs. (17), (18),
and (19) and are as follows:

G_(r,8)=6(s = r)r+ 8(r - s)s, (21a)
G (7,8)=6(s —¥)T =)+ 6(r ~ s)T =), (21b)
G(r,s)=8s=7) ——~Y(TT— s) + 8(¥ — s) ———————-S(TT— 7) - (21e)

The mappings, Eq. (20), and the covariances G.(7, s)
are the same as those given in Ref. 2. The Wiener
promeasure is equivalent to the probability distribution

(a1 = x8)°
Ty @)

1
Pys(Xp | %) = [2n(t,., - tk)]ﬂ'z €xp (—

Uhlenbeck-Ornstein

This measure is defined by p(f) = 2? D(0)=cosf (T - 0)

and /) (0) = cosQo. We find
P_: j =& by P_f(t)=x(t)=cos(T - t)f _floyda |

cosT - o)
(23a)
T f(o)ydo
P.: }{ —&, Dby P, f(t)=x(t)=cosQt | “costo (23b)
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P:} =& by PF(t)=x(1)

flo)do _ _ sinQt
__coSQ(T—t)f cosUT - 0) ~ sinQT
T (0)do
[ e e

The covariances G.(7, s) in this case are given by the
following expressions:

1
QcosQT

+ 8(» — s) sin§¥s cosSUT - 7)],

G.{r,s)= [8(s = 7} sinQr cosT ~s) (29a)

1
QcosT

+ (7 — s) cosQs sinS(T - 7)],

G,(r,s)= [8(s — ¥) cos§r sinfA(T - s)

(29b)

1
QsinQT

+ B(r — s) sinQ2s sin§T — 7)].

G(7,8)= [6(s = ¥) sinQ sinQYT - s)

(29¢)
The expression (23b) is the same as given in Refs, 2

and 3. The Uhlenbeck—Ornstein promeasure is equiva-
lent to the distribution

[e) 1/2
)= (ﬂ{l - exp[-2Q(t,, - 1)} ) ’

Puolxyn

U 1 = xpexp[= Aty = )P
xexp(’ 1T = expl— 29 M—tf)J}k )
(25)

IV. CONNECTION WITH THE CAMERON-MARTIN
TRANSFORMATION

We decompose the primitive mapping P_, defined in
Eq. (9), as

P.=Pqy o P.yr, (26)

where P_y; is the primitive mapping, Eq. (20a), from
the Hilbert space // to &_ corresponding to the Wiener—
Feynman pro (pseudo) measure. This defines a linear
mapping P, of ®_to &_ (Ref. 5);

D’ (a)

Py () = y(t) = x(t) + D(2) f x(0) do. 27)

It has been established in Ref. 6 that P . leadstoa
promeasure corresponding to Wiener integral and in
Refs. 1, 2 that P_y; leads to a pseudomeasure corre-
sponding to the Feynman integral. That is

(28)

j;_ F(x) d"-’-F:f@_ F(x) exp'(-zé / x2(8) dt) Hx)

35 J. Math. Phys., Vol. 17, No. 1, January 1976

where
7o pm=exp (- 5 fT du() [T () ntl, ).

If F=f o P, we can write the left-hand side of Eq. (28)
from the transformation relation given in Eq. (7) as a
function space integral of f with the pseudomeasure of
covariance G.(7, s) given in Eq. (17):

Sy F®)dw ()= [ f(x)dw_(x). (29)

The right-hand side of Eq. (28) can be written as a
path integral with Feynman measure using the
Cameron—Martin linear transformation of the Wiener—
Feynman measure. This is given in the form required
by Gelfand and Yaglom.” We find

/o‘_ F(x)exp(%/: kz(t)dt)[)(x)
=[D(O)]*/2 /;_ fix) exp[% (’!(;T (5 dt
+fT D,(,o(;)

0

(0) dc)] Dx). (30)

Equating the right-hand sides of Eqs, (29) and (30), and

using Eq. (8), we get

f F(x) dw(x) = [DO)]/2 f £x)
(-3 (-

xexp(%[T tlx t) p(t) %% t)])D(x)
(31)

We have thus established the connection between our
definition of the pro (pseudo) measures and the corre-
sponding Feynman type of integral which is to be calcu-
lated by the “time-slicing” procedure. The advantage of
our definition of Feynman type of integrals with pseudo-
measures and techniques is that integral of cylindrical
functions can be readily calculated by mapping P, : &,
—IR* It gives many new results, Refs. 2 and 8, in-
cluding the diagram technique. It has been shown in
Ref. 2 that the covariance G(7, s) of the pseudomeasure
on & is the Feynman Greens function. G(7, s) given in
Eq. (19) is the Greens function of the differential oper-
ator d?/df - p(t).

The method of primitive mappings for defining pseudo-
measures on spaces ¢_, & developed in this paper is
particularly suited to the study of systems whose con-
figuration space is a Riemann multiply connected mani-
fold. ° The results of Koval’chik!® for various types of
Wiener integrals can be easily obtained using our Egs.
{7y and {17).
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A theorem on stress—-energy tensors
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The equality of the symmetrized Noether stress—energy tensor (Belinfante’s tensor) and the canonical
stress—energy tensor (functional derivative of the Lagrangian density with respect to the metric) is
established by methods based on the formalism of tetrads and Ricci rotation coefficients. The result holds
for any Lagrangian which contains no derivatives of the fields higher than first order.

The equality of Belinfante’s symmetrized stress—
energy (SE) tensor and the canonical SE tensor
(functional derivative of the Lagrangian density with
respect to the metric) was demonstrated for integral
spin fields by Rosenfeld. ' For fields with half-integral
spin it is not immediately clear how the canonical SE
tensor should be defined. Goedecke® has shown that,
subject to a certain prescription for carrying out the
variation of the metric, Rosenfeld’s equality holds for
the Dirac field and for the coupled Maxwell and Dirac
fields. Goedecke conjectured that a general proof of the
equality for any field should be possible. The proof
presented here is based on the tetrad formalism,3~?% in
which the Noether SE tensor and the Noether spin tensor
are defined as functional derivatives of the Lagrangian
density with respect to the tetrad components and the
Ricci rotation coefficients.

Let L(¢, 9,¢) be the Lagrangian of a set of fields ¢
in a Cartesian coordinate system in Minkowski space-
time. We generalize it to a Lagrangian density & in a
curvilinear coordinate system in the following way.?
Introduce a tetrad % and convert all the coordinate
based indices (u,v, - -+) on ¢ to tetrad based indices
(a, B, -+-), by contractions with hy or its inverse al.
Introduce a set of Ricci rotation coefficients A*#, for
the purpose of constructing a derivative of ¢ that is
covariant for coordinate transformations and spacetime
dependent Lorentz rotations of the tetrad. Then

8(¢,au¢, hz; }\aBu):hL(Qby ¢o¢)

is the required generalization, invariant under tetrad
rotations and a scalar density of weight 1 under coordi-
nate transformations. We have used the notation

4]

h=|ng| = (=g)/? (2)
and

bo =hi(3,¢ +21"%,Gopd). (3)

The quantity in brackets in (3) is the covariant derivative
¢, and the G,; are the constant matrices which generate
the Lorentz rotations in the ¢-representation.

Two tensor densities /; and s*,; are defined as the
functional derivatives of € with respect to 2% and A*?,.
That is, for the infinitesimal variations

Ohy =g5, OA*F, =0, (4)
we have

1
O~ + 58k L%,
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(where ~ denotes that all divergences have been omitted
from an equation).

Suppose the original tetrad was & = 5% before the
variation (and hence g,,=n,,, i.e., the coordinate sys-
tem was Cartesian), and suppose also the Ricei rotation
coefficients were zero. Then, when we work only to
first order in the infinitesimal quantities, the distinction
between tetrad based indices and coordinate based
indices is not relevant. All vector indices are raised
and lowered with the Minkowski metric.

Substitute for the variations in (5) those brought about
by an infinitesimal coordinate transformation
xu — xu» + gu:

[a=-0,%, £, =0 (6)

(to first order). Integrate (5) over a region of four-
space on the boundary of which £* vanishes and apply
Gauss’s theorem. We obtain the identity

3,4 =0 (7

in the Cartesian system. Similarly, substitute the
variations brought about by an infinitesimal tetrad rota-
tion with parameters A ;= —2Ag,:

gatB: B gaBu:aucaB, (8)
and we obtain the identity
auS“aB+2t[aB)=O. (9)

The rotation coefficients and the tetrad have been
treated here as independent fields in the variation.
However, since we have chosen the rotation coefficients
to be zero in the initial reference system and since we
know how they transform,® we can easily show that
they can be constructed from the tetrad. The infinitesi-
mal form is

Case =2u81am T2abeur = %5Liaur- (10)
Substituting this in (5) gives
SR~ +5,5980) g (£1%8) +58,5°°)C 14g ). (11)

The second term vanishes on account of (9) and the first
term can be reexpressed, using (9), as

68~ ¢ o), (12)
where the symmetric tensor 6°? is
eaB:taB+ap(%spaB_s(aB)a). (13)

For integral spin fields, an alternative (and more
usual) way of generalizing L{¢, 3,¢) to curvilinear
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coordinates is by means of the metric and the

Christoffel symbols, without the introduction of a tetrad:

(P, 2,0, Fuus 7,8,0)- (14)

Because (1) and (14) are equal in the initial (Cartesian)
system, they are equal in any system, because they
have the same transformation properties for coordinate
changes and tetrad changes. The canonical SE tensor
density is defined by arbitrary variation of the metric
68, = £,

08~3T" ¢, (15)
so that
o8 g
T,,=2|5 (-—_V)_ =1 (16)
i3 ? aapgu agu

For half-integer spin this tensor is undefined, because
a spinor index is essentially related to tetrad rotations,
not to coordinate transformations. The Lagrangian
density of a half-integer spin field necessarily contains
the tetrad components. However, if we are interested
only in the reference systems that differ infinitesimally
from gartesian ones, the canonical SE tensor (16) can
be defined for half-integer spin provided we destroy the
independence of infinitesimal tetrad rotation and infini-
tesimal coordinate transformations. The simplest way
of doing this is to impose the restriction

g[orB]ZO (17)

on the tetrad variations. This condition is implicit in
Goedecke’s treatment of the Dirac field, though he does
not explicitly introduce the tetrad concept.

Now, because of the orthonormality of the tetrad

Nas Ry =8y, (18)
we have

Euu:ZC(uu)s (19)
and (15) is
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R ~THE sy (20)

Comparison of (12) and (20) gives immediately, in the
Cartesian system (by an integration and application of
Gauss’s theorem),

T,,=0,.. (21)

[Incidentally, the identity 9 o T*" =0 follows from substi-
tuting in (15) the variation £,,=-3,¢,~2,%,, integrat-
ing, and applying Gauss’s theorem. |

Thus the equality of the Belinfante SE tensor and the
canonical SE tensor is established if it can be shown
that {,, is actually the Noether SE tensor, i.e., we
have to show that

=84 — 40,0, S*.a=7"Gysd, (22)
where
™=2%/08,0¢. (23)

These follow from the form (1) of 8. Note that, in (1),
L(¢, ¢,) is constructed only from ¢, ¢, and the
Minkowski metric; the tetrad components do not occur
explicitly, but only in the structure of ¢,. For variation
of the tetrad and rotation coefficients,

5Q=0hL +hOL =6hL +h(2L/3¢,)00,
=04 8- (32/20, M=, +3£%,Gagd)
=(0 = 1 0, )L}, +3(7* Go e,
Comparing this expression with (5) identifies the tensors

¥ and s* g which coincide with (22) in the Cartesian
system.

1L, Rosenfeld, Mem. Acad. Roy. Belg. 18, No, 6 (1940).
’G.H. Goedecke, J. Math, Phys. 15, 792 (1974).

5T W.B. Kibble, J, Math. Phys. 2, 212 (1961).

‘D, W. Sciama, Proc. Camb. Phil, Soc. 54, 72 (1958).
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Empty space algebraically special metrics possessing an expanding degenerate principal null vector and
Killing vectors are investigated. Attention is centered on that class of Killing vector (called nonpreferred)
which is necessarily spacelike in the asymptotic region. A detailed analysis of the relationship between the
Petrov-Penrose classification and these Killing vectors is carried out.

1. INTRODUCTION

Despite the fifty odd years of work since the ap-
pearance of the Einstein equations, the number of known
solutions, and in particular those which may be con-
sidered as having physical significance, remains
limited. The traditional approach leads in all but the
simplest cases to insoluble nonlinear differential equa-
tions and then more or less grinds to a halt. Since the
outlook for further progress in this direction is not
very encouraging, one should perhaps seek other roads
to information. In particular, one can ask what
geometric and physical information may be extracted
from a metric without knowing its exact form, i.e.,
without having the solution to its associated minimal
differential equation. !

To this end the author has been developing a tech-
nique®? applicable to vacuum algebraically special
metrics with expanding degenerate principal null direc-
tion (metrics of this sort will henceforth be referred
to as EDPN metrics) which allows calculations to be
done without appeal to coordinates and enables an in-
vestigation to be carried past the barrier of insoluble
differential equations.

As a first application, this technique has been used
to investigate Killing vectors in vacuum EDPN
metrics. It was found that these vectors are of two dis-
tinct types, called preferred and nonpreferred (cf.
below). An analysis of those metries containing a pre-
ferred Killing vector has previously been published. *
The investigation is completed with this paper which
focuses attention on those metrics containing at least
one nonpreferred Killing vector,

Some of the results presented have been obtained
using an algebraic approach by others (notably Petrov®
and Collinson and French®); however, it is felt that the
additional insight obtained through the approach present-
ed here justifies their rederivation. The coordinate
free approach shows that the algebraically special
metrics are rich in geometric structure, and some of
the proofs presented are based on appeasl to these
geometric structures.

The paper is divided into sections as follows. Section
2 contains a brief resume of the technique and of some
of the more pertinent results obtained in Ref. 4. Sec-
tions 3 and 4 deal with general properties of EDPN
metrics and introduce (for when needed) a specific
choice of coordinate system and gauge. They also con-
tain additional information on the operators of the for-
malism. A detailed analysis of how many Killing vectors
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of each type may be present in the various subclassifi-
cations of algebraically special metrics (type N, {3, 1},
etc.,) is carried out in Sec. 5, and finally a brief dis-
cussion of the results is given,

2. REVIEW OF THE TECHNIQUE

It deals with an algebra of objects and differential
operators all of which are of good spin and boost
weight in the sense of Ref. 7. That is, given a standard
null tetrad I,, n,, #,, and m, (the bar represents com-
plex conjugation) such that

(2.1)

and all other scalar products vanish, an object n is said
to be of weight (p, g) if, under the tetrad gauge
transformation,

(13 a—~ _
Ing=-m®my =1

"=\, n*—2ln, (2. 2a)

m® —~ explig)ym?®, (2. 2b)

7=\ exp(isé)n, (2.3)
where

t=(p +q)/2 is the boost weight,
s=(p~q)/2 is the spin weight.

The fundamental objects of the formalism are those
elements of the Newman—Penrose (N—P) spin-coeffi-
cient algebra® which possess good weight. Following the
practice initiated in Ref. 7, some of these will be
designated differently than is customary. Those spin
coefficients differing from the notation of Ref. 8 are
(the original notation appears in brackets)

K'(— V)’ 0'(— A)’
23

p'(~ u), T'(= 7).

The differential operators”” are essentially those
those of Ref. 7, modified to take advantage of the
simplifying properties of algebraically special empty
space metrics. To define the new operators, introduce
the auxiliary vectors

~ {1 1\ 1{% ¥
o =nbv - -+ = {22, 22
e [7(02) (2 )

e P _—
+3'rma+ETma, (2.4a)
By =i Vamb+[9°'rv' —1—(\1‘2 - &)] L,
2 p
P = p_—
- ‘:) T, + E Thig, (2 4b)
where
Q":% - % {(p*0 is assumed throughout).
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The derivative operators p, 1;’, 5, 8’ are then defined

by

V.- t&a+sEa=nap +la(E’ +TE+ 78" = pm, B’ — p?n—ag).

(2. 5)

_ These operators have weights p(1,1), p’(-1,- 1),

~ o~ BIO p/o N . _ —
[5,3']= - —+3(2+pR°)¥3 - 5(2 - pQ°)\IJ‘2’)p

o Wl
o
Ao
+
oW

plo_ qﬁlo, (2. 27)

+
-3 K'° J50 1= 230 1—9 76 m —
[p',8]=\- = +¥5 + 2pBY5 ~ 2p°¥35Q°)p +gk'°,

8(0, —2) and 8’(~2,0), and also possess the properties ’o (2. 28)
~ K - -
that [])I, 5']:(_ ‘E,‘+‘I‘§+%pﬁ"1’§+%p2‘1’§5'9f’]9+PK’°.
[p,p"In°=[p,8ln°=(p,8' =0 (2. 6) ‘ (2. 29)
Not as in the N—P formalism, ? these commutators are
if not identities but are additional restrictions which must
pi° =0, @7 be satisfied before a solution is valid.
(A degree sign o will be used to mark any quantity The following results concerning Killing vectors in
annihilated by p. ) In addition vacuum EDPN metrics were obtained in Ref. 4.
P = ’];,’ 5 =5 (2. 8) If £ is a Killing vector and

For a more detailed treatment of the operators, in-
cluding symmetry properties and the technique of in-
tegration without coordinates, the reader is referred to

£ = Egn® + Eyl° - Eym® - §m®, (2.30)

then, in the standard choice of tetrad, expressions for
£, &, & are given by

Refs. 2 and 7.

In Ref. 3 the equations were written out and partially &0 =55, (2.31a)
integrated for the standard choice of tetrad, i.e., one £,=53/p, (2.31b)
chosen so that 1 1\ ~ B

k=T=T=0=0"=¥;=¥, =0, (2.9) 225(5+5>P'55’+5i5'9°—P'°§3
The results were — 3P 5 + 5(p¥3 + YIS, (2.31c)
p' =pp’° - 3(p? +pp)¥s, (2.10)  where £ and £ are undetermined functions which
K =K'° = WS - %ng'\lﬂz’ _ %ps\l,i.g,ﬂo’ (2.11) satisfy the relations
¥, =pius3, (2.12) B = Q°L3, (2.32)
Wy = pP0S 4 pP 105 4 2 phug B, (2.13) pes=8¢5=0, (2.33)
U, =pl5+ p2 8T+ p3(L38'Q° + £5/5"%3) g'g;jg'g; ) —~21?'£g, . N (2.34)
+pt 3880 + 593873 Q°) + £ pPU(52°)%. (2.14) gg;i'p“’— E;?Ipm ) g?ép'uzpmwa O (2.39)
E3p U3~ £35705+3¥5p 5 =0, (2.36)
p, p'°, k', ¥, ¥3 and ¥j are undetermined functions £pe - giglgo_z?gﬂo+3905158:0. (2.37)

which are subject to the relations

This last equation was not explicitly displayed in Ref.

8'p’0 =~ (¥ +Q°¢°), (2.15) 4, but is inherent in the condition that &, be real.
p'p’e=8k’, (2.16) In general, if 17 is a (p,q) quantity and £° is a Killing
G (2.17) vector, then
ug=prus, (2.18) E5p '~ &8~ E;Bn + b7 85 - 2s(8757 - 5ED =0. (2.38)
5Ug=pus (2.19) Equations (2. 35)—(2. 37) differ {rom the general case
- (2. 38) in that they are part of the necessary and suffi-
o¥5=0, (2.20)  cient conditions that £ defined by (2. 30) be a Killing
SSIQO =207 + T ~ Eg, (2. 21) vector. The normalization of £° is given by
Troo _"Ji1o 1o oz 1 1 1\~ fod -
])'Q =p’°=p’°. (2.22) Ly pa_ _ E1§1 " o[__(__ +:> TEO L EOEIN° = ok
2848 op £ o2\p "5 p'Es+ & p'oE;
The derivative operators acting on p are _ %ﬂ"}?'&g] + Hou3 +i—)‘f’§)(€8)2- (2.39)
pp=p?, p'p=p%Hp’° - $p°¥3- $pp°Ts, From this expression it is clear in the asymptotic
_ N _ (. 23) region {p — 0) unless £} =0, the Killing vector &" will be
Bp=0, 3'p=p"'Q, ) spacelike. Therefore, EDPN metrics which are
asymptotically stationary must contain a Killing vector
th t .
and e~commuta ors arf £% such that £=0. A Killing vector possessing this
[p,p')=- 2(p*¥5+p*T3)p, (2.24) property is referred to as “preferred. ”* The existence
(b §1-0 (2. 25) of a preferred Killing vector restricts the space to an
’ 5 ’ ’ extent that all such metrics may be found. This program
[p,8']=0, (2.26)  was carried out in Ret. 4. The results obtained there
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which will be used frequently in this paper are as
follows:

There can be at most one preferred Killing vector.
If one exists, then
K'°==p'°—f)'°=0 (2. 40)
and there exists a gauge in which &,=0, [This last
property follows directly from (2. 40). ®]

Using Eq. (2.34) and the commutation relations, it
is a simple matter to obtain the following useful results:

5’F'§8=- KIOE?_T(IOE_AZ’ (241)
8P es=—K'E+(p"° - p")Es, (2.42)
8p ey =~ Koty + (p'° = P")E]. (2.43)

3. A GAUGE AND A COORDINATE SYSTEM

While a good many of the results to be presented will
be obtained without appeal to a gauge or a coordinate
system, the author has been unable to obtain the de-
sired goal of eliminating them entirely. It is therefore
desirable to develop a gauge and a coordinate system
which harmonize as closely as possible with the tech-
nique of investigation.

As is well known, in the standard choice of tetrad the
vector m, is proportional to a gradient and so may be
written as

- Pm, =T, (3.1)

A natu_ral choice for two of the coordinate functions is
¢ and ¢, Equation (3. 1) defines ¢ to within a transforma-
tion of the form

¢'=¢'(0), 8.2)
which in turn induces the transtormation
p-—P'=:—§,P. 3.3)
The factor P obeys the Blochlinger equations®
pP=pP— P=pP°,
3.4)

EIPozglPo___o.

With the choice of ¢ and ¢ as x° and x* respectively,
the tetrad vectors {* and #°® are confined to a subspace
of the tangent space spanned by 9/9x! and 3/

Since the operators p and p’, are involutive under
commutation, there exists a gauge such that®

1°§,=n"d, =1°B, =n"B, = 0. (3.5)

Let this choice be considered the standard choice. This
still leaves the gauge freedom

A—AL, 8, 06— 6(,7).

The coordinate x? will be chosen to be an affine
parameter along the integral curves of the degenerate
principal null direction. Several choices of x! are
viable, for all of which

(38.6)

%!, =0, 3.7
so that if Eq. (2. 7) holds, then
°=n"(x, ¢, ¢). (3. 8)

41 J. Math. Phys., Vol. 17, No. T, January 1976

If, in addition, p’n°=0, then
n°=1°(¢, £). (3.9)

With these choices, the operators §, 5’ [operating on
a degree marked (p, q) object] may be displayed in the
convenient form

~ 1 3

?5Tl°=<mT =i qmta, + 62)71", (3.10a)

~ mt - =

6'1’)0 = 7 a_x_j —pmaaa+52>'n°, (3. 10b)
where 3, is defined by

Sym= P°f>°'sgaz Py (3.11)

and is to within a factor the “edth” of Newman and
Penrose, *1® defined on a two-surface with metric

_dgdt

s = Bope-

(3.12)

Although the original operator was defined for P°
=3(1+¢Z), it is clearly the same animal. It is of in-
terest to note that this two-dimensional edth admits of
a general coordinate free definition by means of the
following commutative diagram.

MoV, (m°v,) S
- S,

M {m,m) l 1 1 (m, m)
T 62(-8.2) ‘)S

m® and m° are vector defined on the two space with
normalization

Mg+ 1 = mOm, = i, =0, (3.13)

and 11 (m, m) is any operator which contracts the tensors
T,...,and S,..., with the dyad vectors m° and m° an
appropriate number of times to form the spin weighted
scalars T and S respectively. (If the metric has a posi-
tive definite signature, then m° is complex). Unfor-
tunately, no such elementary description of the prop-
erties of the four-dimensional operators p, p’, 5, &’
exists. 7

As a simple application of the above, consider the
product £§9P°, where £f is the scalar defined by (2. 30)
with £ a nonpreferred Killing vector. £2P° is a (0,0)
object which obeys

b(E3P°) =57 (E3P°) =8 (£3P°) = 0, (3. 14a)
so that
E=E(2)/ P, (3. 14b)

where £(£) is an unknown function. If desired, the £(¢)
associated with any one Killing vector may be absorbed
into P° by using the coordinate freedom (3. 2) with

ag

()= e

Combining this with Egs. (2. 30) and (3. 1), it follows
that the coordinate ¢ may be chosen such that one non-
preferred Killing vector may always be put in the form

(3.15)

I*; g -2 a
1 2 a . 9
& ax‘+'E ax”"ag*pag' 3.16)
For metrics of the Robinson—Trautman typell
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(2°=0), the operator § may be reduced further. Since
p'°=p’° [Eq. (2.22)], the commutator [J,5’]n° vanishes
if n° is a (p, p) quantity and there is a gauge® in which

mea, =mea, =0. (3.17)
But &, transforms as
A=A+ A +r="2,, (3.18)

so that in any other gauge, m"&‘z is of the form
A*"lm®x¥ ) where 1* relates the gauge under considera-
tion to one determined by (3. 17). In addition, since the
tetrad vector {° is twist free, the coordinate function

x! may be chosen such that

xl~1,. (3.19)

If this be done, then m* takes the simple form pP°5;
and the expressions (3. 10) with P° = P° reduce to

gno = p° 1-S>\*qaic (POSK*-QTIO), (3. 20&)

.glno - po 1+sk*p_aa_z (Po -S)\*‘Pno)' (3 ZOb)

4. SOME GENERAL RESULTS

The existence of a single nonpreferred Killing vector
£? in a vacuum EDPN metric introduces the additional
functions £§ and £5 and the associated equations (2. 32)—
(2. 37) into the problem, but as far as the author has
been able to determine, there are no associated physi-
cal restrictions. This statement no longer holds for
those EDPN metrics with more than one Killing vector,
and the balance of this paper will be concerned with
these additional restrictions.

As a first step in this program, one calculates the
commutator of two Killing vectors. If the tetrad vectors
are tied to the intrinsic geometry of the space it is
possible to derive a simple expression for the commu-
tator of two Killing vectors (cf. Appendix, Ref. 4). This
result is applied here as follows. Assume that there
are 7 linearly independent Killing vectors (g“ (a, B,y

a)

=1,...,7) and that the commutation relations are given
by
a Y ca
, =C 4.1
(a) (s)] o8 ‘é) @.1)

where cyB’s are the structure constants of the associated
[+3
Lie group. Inserting the expression (2. 31) for the (é‘;,s

into the commutation relations of Ref. 4 and using the
integration techniques of Ref. 2, one arrives at the
relations

14 o o o o o

c E= Ep'E + £ £ 9, (4. 22)

ag(y) () ()1 [(a) (8)]

¢ k= g8, (4.2b)

a8 (r)  [(a) ()1

Qo' =0, 4. 2¢)
where

Ep &3 =Ep' & ~ Bp'E, ete.

(@ (a3 (B fa)  (a) (8
Equation (4. 2¢) involves considerable labor and includes
the use of the general expression (2. 38) applied to both
p'° and 8'0°,
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Equations (2. 17) and (2. 14) show that if k’°=0, the
metric is nonradiative, while £2°=0 means that the
metric is Robinson—Trautman. Equation (4. 1c) thus
gives the general result:

If a vacuum EDPN metric has two or more Killing
vectors, it must be either nonradiative or a Robinson—
Trautman metric.

Petrov® has shown that a type {2,1,1}, D, or {3,1}
vacuum metric can have at most 4 Killing vectors. This
result is now rederived and extended to the following:

A vacuum EDPN metric can admit at most four
Killing vectors, and when this is the case, one of them
must be preferred.

The proof consists of showing that there exists a
homomorphism of the Lie algebra of Killing vectors
onto a two-dimensional subspace of the tangent space
and that the kernel of this homomorphism is a preferred
Killing vector. Since the maximal number of Killing
vectors which can act on a space of two dimensions is
three and there is at most one preferred Killing vector,
the result follows trivially once the homomorphism is
established.

Equation (4. 2b) when written out using the coordinate
system of Sec. 3 and with £ expressed as in (3.14) ap-
pear as te
2 .= -3, =
= E@)- ()= £(D).
¢ ) (B)( )8§ (a)( )
This relation clearly induces a homomorphism of the

Lie algebra of vectors £° a/ax“ onto the two-dimensional
(o)

subspace of the tangent space spanned by the vectors
3/0x% (3/9¢) and 8/6x% (3/9%). The kernel of the homo-

morphism consists of Killing vectors £° for which &3
() (o)

=0, and such a Killing vector is by definition a pre-
ferred Killing vector. This is the required homo-
morphism and so the result is proved.

$E@= ¢t 4.3)

aB (y) (a)

A second homomorphism also exists for Robinson—
Trautman metrics. Since £f is real, using the expres-
sions (3. 20) for § and 8’ in Eq. (2.32) and its complex
conjugate leads to

_?_*"10~__ *=1 go _ 4.4

g (io)‘ ER (EUO 0, @.4)
so that

£ = H@)N* (g, &), (4.5)

(a) (a)

where H(u) is an undetermined function of # (=x1).
(o)
Using (4. 5) in the commutator expression (4. 2a), we
have

& Hwy =" (H(u)—"— H) - Hw) 2 H(u)). (4. 6)

@B () M\ % (g @ U (a)
If the left-hand side is nonvanishing, then n'/x* must be
a function of # only and can be set equal fo 1 using the
freedom inherent in (3. 19). This establishes a homo-
morphism of the Lie algebra of Killing vectors onto the
one-dimensional subspace of the tangent space spanned
by the vector a/au,
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If the lhs of (4. 6) vanishes, then the functions H(«)
are constant multiples of each other. Both possibilities
show that the Killing vectors may be chosen so that
(H(u) =0, a>1. Therefore, for all but at most one

a)

Killing vector

l, %= & =0.
(a) (&)

4.7

This allows one to establish the following result:

If an R—T metric has three Killing vectors, then it
must be nonradiative.

As in the preceeding paragraph, the Killing vectors
may be chosen so that & = £f=0. Equation (2. 42) then
Yields 2) (3)

ESK’°+ £k’ =0,
@) @)
E5K’° + E5K"° =0,
(3) 3)

(4. 8a)
(4. 8b)

so that either x’°=0 or the determinant of coefficients
vanishes, If the latter is true, then

Ei=cty, Ej=c&
@ ®» @ @

4.9)

with ¢ real. Operating with p, p’, 3, 3’, on (4.9) yields

pe =p’c =Bc =8'c =0. (4.10)

Since c is a (0, 0) quantity, it must be a constant. But

this cannot be, as the vectors £* and £° are linearly in-
(2) 3)

pendent. Therefore, k’°=0 and as before it follows that
the metric is nonradiative.

This establishes the rule that a radiating vacuum
EDPN metric can have at most two Killing vectors, and
if it does, then it is a Robinson—Trautman metric.

5. THE SPECIFIC CASES

If a vacuum metric is restricted to be of a specific
Petrov—Penrose type, then the number and type of
possible Killing vectors is further limited. This prob-
lem was first investigated by Petrov, % who did not
restrict himself to EDPN metrics. In this section the
problem is reexamined, but with the additional re-
striction that the metrics be EDPN,

Type N: y53=y3=0

One sees from Eq. (2.17) that if k’°=0, ¥§=0 and
the space is flat, so that a type N space will not sup-
port a preferred Killing vector. There remains then the
question of whether or not it can contain two nonpre-
ferred Killing vectors. Collinson!? has shown that if the
degenerate principal null vector is twisting (2°#0),
there can be at most one Killing vector. This result
tollows trivially from Eq. (4. 2c), i.e., if there are
two Killing vectors then

QOKIO - 0'
But if the principal null vector is twisting, 2°#0, so
that k’°=0 and the space is flat.

If the principal null direction is nontwisting, then
Q°=0 and Eq. (4. 2c) is automatically satisfied so that
it is possible for the metric to have more that one
Killing vector. In Sec. 4 it was shown that if there
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exist three Killing vectors, then «’°=0. But this cannot
obtain for a type N metric; therefore, it can have at
most two Killing vectors. Collinson and French® give
two examples of such metrics.

Type (3,1) : y3=0
Assume that a type {3, 1} metric has # linearly in-
dependent Killing vectors £° (@ =1,7, »>1). Assume
(a)

also that none of these are preferred. Then by Eq.
(4. 2c) there are two cases.
Case 1: Q°#0,k'°=y3=0

Using the field equations (2, 18), (2. 19), the expres-
sion (2, 38) for the Lie derivatives of ¥§ are
£25'Us+ (8" &5 - 257 £)¥5 =0,
1) O @
ESBTUS+ (87 &5 2p" EQWS=0.
@ @ @)

(5. 1a)
(5. 1b)

If~5"1/°: 0, then direct calculation of the commutator

[5,58’]¥3 shows that ¥3=0 as well. But this cannot be,

therefore for consistancy the determinant of coefficients

of (5.1) must vanish, i.e.,

£ (8'£3-2p' &)

W) )] M | g,
£ (8" £7-2p' &)

@) @) @
Operating on (5. 2) with p’, and adding the result to its
complex conjugate yields

8Ol [(BE+5E) b
3(5m_plo) 1)y o)y _ ") Y] 1) =0.

g8k |37g+8E) By

@) @) @ @ )

(5.2)

(5.3)

The second determinant vanishes by virtue of Eq. (2.34)

and the first determinant vanishes only if £7=cé}, ¢
G @

real, As shown at the end of Sec. 4, this means that ¢
is a real constant. Therefore, either the Killing vec-
tors may be chosen so that one of them is preferred or
the determinant is nonvanishing and

plo ___Blo. (5. 4)
Given Eq. (5. 4)(, it is a trivial matter to show that there
is a preferred Killing vector, Since «’°=0 as well,

there exists a (1,1) object 63 such that?

pos=p’oc =565 =863 =0, (5. 5)
Define a vector 6° by
ga = egna — ploegla. (5' 6)

Equations (2. 31)~(2, 34) are satisfied by this vector,
and conditions (2. 35)—(2. 37) are identically fulfilled.
Therefore, the vector defined by (5. 6) is a preferred
Killing vector.

The case p’°=p’° has produced a preferred Killing
vector, but it has not eliminated the possibility of two
or more nonpreferred. To put a limit on these, return
to the matrix Eq. (5.2) in the form

E=céts, (5.7a)
1) 2y
87 E5-2p" 5 =c(8 £5- 2p" £2). (5. 7Tb)
) (1) (2) 2)
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Operating on (5. 7a) with p, 5’ % and on (5. Tb) with 5’
reproduces Eq. (5.5), and ¢ must be a constant. If ¢ is

real, then £ and &* essentially ditfer by a preferred
) @)

Killing vector, and so we assume that ¢ is complex. In

that case, £%and g“ may be chosen so that
(t9)
£5=1 &7 (5. 8)
Q@
Writing out equation (2. 34) for £° and £°,
it} @)
6 1+6£1——2p 50, (5.93)
@O W
5 51+5§§=~2p . (5. 9b)
@ @ @)

Multiplying (5. 9a) by ¢ and using (5. 8) in (5. 9b), we
have

8 Ep=—p Lo +ip’ . (5. 10)
(1) 1) @)
Operating on this equation with 5, and using com-
mutator (2, 27)],
p'°E7=0 (5.11)

53]
But this is a contradiction, for p’°=0=>¥§=0.
Therefore:

A type {3, 1} EDPN metric with $2°#0 can have at
most two Killing vectors, and if it has the maximum
number, then one must be preferred.

An example of such a metric has been given by
Robinson. 3

Case 2: §2° = 0 (Robinson~Trautman)

There are no restrictions on the existence of two
nonpreferred Killing vectors, and Collinson and
French® have given an example. If one looks at the
possibility of three Killing vectors, one finds that such
a metric can exist provided that one of the Killing vec-
tors is preferred,

If there exist three Killing vectors, then «'°=0 (cf.
Sec. 4) and a preferred Killing vector may be construct-
ed as above. The general expression for a type {3, 1}
Robinson—Trautman metric with three Killing vectors
also appears in Collinson and French® and one of the
Killing vectors is indeed preferred.

Types {2,1,1} and D

A type {2,1,1} or type D metric is free to have two
Killing vectors with no restrictions beyond those im-
posed by the resulis of Sec. 4. However, if one asks
that the metric have three Killing vectors, one finds
that not only must the metric be type D, but that there
also exists a fourth Killing vector. The proof of this
proceeds as follows.

Let a space be type {2,1,1} (¥$#0) and let it contain
three Killing vectors &* (o =1,3). The first step is to
show that (o)

K’OZD'O"‘BIO:O. (5'12)

The first part (¥’°=0) has been proved in Sec. 4, and if
for any &%, p’ £5=0, the second part follows from Eq.
(o) (@)
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(2.42)., Therefore, it may be assumed that ' £+0 for

(o)
any ¢°, Writing the Lie derivative of ¥5 using Eq.
(@)

(2.36),

3p7 £Ug+ £~ £387W5=0 (a=1,3). (5.13)
(o) (a) (@)

Since ¥5+# 0, for consistancy the determinant of the

matrix of coefficients of ¥3, §¥3, p’¥3 must vanish.

Operating on this determinant with ', adding the re-

sult to its complex conjugate, and using (2. 34), we have

£ & +2°|p’ &5 &3] = (5.14)

(Blo_plo)
(a)(ag (a) (a) (a)

where the straight brackets represent the square deter-
minant formed from o =1, 3.

Operating on (5. 14) with E’ one obtains

20p"-p") b & & | - (5. 15)
() (a) (@)
so that either p’°=p’° as required, or
brEs & &)= (5. 16)

(@) (o) (a)

If the latter, then using (5. 16) in Eq. (5.14), together

with the fact that the determinant l (gg (§° (§§
o [+1

vanishing yields the required p’°=p’°.

From Eqgs. (2. 41)—(2. 43) it follows that the (0, 0)
objects p’ £§ are all constants. Therefore, the Killing

vectors may be chosen so that b EO

p’ £ =0. Equation
(2. 36) gives @

£8b"¥§+ &‘{8' $=0, (5.17a)
P13+ 51 5"¥5 =0, (5. 17b)
3)
so that either
prus=5"¥5=0 (5.18)
or
& =ck, E&l=cél. (5.19)

@) 3 @ (3
with ¢ a real constant.

This second possibility is excluded by the linear in-

dependence of £* and &%) and so (5. 18) is proved
@) @)

From Eq. (2.36), with the use of (5.18) one sees that
p’ =0 as well. Since £]=0 for at most one Killing

) (@)
vector, one can now choose the Killing vectors such

that &, §1¢0 Equation (2, 35) yields
1) @

(E 5' o Z;’%p'c’:o, (5. 20a)
1
E -6 plo+ geﬁplo 0
(2)

(5. 20b)

Since £%and &* are linearly independent nonpreferred
(1 @)

Killing vectors, it follows that

8'p’°=0. (5.21)
This in turn implies [(2.15)]

vg=0. (5. 22)
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Similarly from Eq. (2.37), §'Q°=0, and finally from
(2.15), ¥5=0.

It has now been established that the existence of three
Killing vectors requires

§=¥3=8"45=8'0°=0. (5. 23)

A glance at Eqs. (2.13) and (2, 14) suffices to show that
(3. 23) is a sufficient condition that the metric is type D
and the first part of the prootf is complete.

One could in fact demonstrate the existence of a fourth
Killing vector by a lengthy calculation; however, it is
easier to cheat and look in Kinnersley’s catalog of type
D metrics, !* where one notices that type D metrics have
either two or four Killing vectors. This completes the
proof.

CONCLUSION

An extensive analysis of vacuum EDPN metrics con-
taining Killing vectors has been carried out. It was
shown that the number of possible Killing vectors is
highly dependent upon the Petrov—Penrose classifica-
tion. It was also shown that with three Killing vectors a
vacuum EDPN metric is necessarily nonradiative and
that if it has two Killing vectors and is radiative then it
must be a Robinson— Trautman metric. This leads to
the result that a radiating vacuum EDPN metric can
only have cylindrical symmetry if it is Robinson—
Trautman,

Also worthy of comment is the fact that there is
slightly more freedom in a type {3, 1} metric than in a
{2,1, 1} metric in that that the former may contain
three Killing vectors and the latter but two.
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The philosophy behind the analysis was to avoid the
use of coordinates to as great an extent as possible.
While it is unlikely that solutions to essential physical
problems lie in the as yet undiscovered vacuum EDPN
metrics, it is felt that the coordinate free approach
used is worthy of further investigation in the hope that
its philosophy, though probably not its mechanics, may
be applied to the analysis of algebraically general
metrics. A thorough understanding of the algebraically
special solutions must necessarily be the first step in
such a program.

I1Minimal differential equations (MDE) refers to what is left
of the Einstein equations after all the imposed geometric re-
strictions have been built in and all the coordinate and gauge
freedom has been used in their simplification. An example of
an MDE is the Robinson—Trautman equation,!!
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Interpretation of Kato’s invariance principle in scattering

theory
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A simple proof is given that Kato’s invariance principle holds for a class of generalized piecewise linear
(GPL) functions, under the sole assumption of existence of the Mdller wave operators. The invariance
principle for GPL functions is viewed as an expression of our freedom to change the scale of time and shift
the zero point of energy. It is remarked that whenever scattering theory can be done, it can be done with
bounded Hamiltonians. The motion of a particle is studied when its Hamiltonian is replaced by a GPL

function of this Hamiltonian.

INTRODUCTION

Let H, and H denote self-adjoint operators on a Hil-
bert space /. (In this paper, H, and H will be thought of
as representing respectively the free and interacting
Hamiltonians for a quantum-mechanical system. We
take 7=1.) Let W (H, H;) denote the Mgller wave opera-
tors (if any) determined by H and H,. That is,

W, (H, H,) = s-lim exp(iHt) exp(- iH,t)

[ S

@)

provided the indicated limits exist. [In some scattering
problems, it is necessary to define W,(H,H,) as the
limits of exp(iHt) exp(—iH,t)P, where P is a certain
projection operator which commutes with exp(—iH,t).
Equation (1) and all other equations inthis paper are
written for the case in which P is the identity operator.
Qur discussion applies with easy modifications to cases
in which P is not the identity operator.] Kato’s invari-
ance principle® 2 states that if ¢ is a special kind of
function then under certain circumstances it is possible
to replace H and H, in Eq. (1) by operators ¢(H) and
¢(H,), and obtain the same Mgller wave operators, That
is, the limits

W, (0(H), ¢(H,)) = s-lim expli¢(H)t] exp[—id(H)t] (2)

t= £

exist, and

W (o(H), dH)) =W, (H,H,). (3)

The type of function ¢ allowed in this invariance prin-
ciple has been somewhat generalized since Kato’s dis-
covery, (see, for example, Ref. 3). However, the sort
of condition imposed is well illustrated by Kato’s origi~
nal requirements: We will say that ¢ is a Kafo function
if ¢ is a real-valued function on (—,») with the proper-
ties that the interval (—«,<) can be divided up into a
finite number of subintervals such that on each open
subinterval ¢ is differentiable with ¢’ continuous, local-
ly of bounded variation, and positive.

Kato first proved the above invariance principle (and
more) for the case when ¢ is a Kato function and H—H,
is a trace-class operator. The principle has since been
proved for similar classes of functions ¢ under much
weaker assumptions on H and H, (Refs. 2—7, and
references therein). The purpose of this paper is to
give an interpretation of the invariance principle and to
prove it under the sole assumption that the limit in Eq.

46 Journal of Mathematical Physics, Vol. 17, No. 1, January 1976

(1) exists, but for a different class of functions ¢. As
will be seen, our class of functions is uniformly dense
(and more) in the set of Kato functions.

I. INTERPRETATION OF THE INVARIANCE
PRINCIPLE

We assume that the limit in Eq. (1) exists, and think
of the operators W, (H, H,) as the Mgller wave operators
for a scattering process. We consider two kinds of
change in our description of the scattering theory:

(A) Change of the zevo point from which energies are
measured: This is performed by substituting Hy,+ b and
H+b for Hy and H, respectively, where b is a real
number.

(B) Change of the time scale: This is performed by
substituting cf for {, where ¢ is a positive real number.

Changes of type (A) are physically trivial. Changes of
type (B) modify the statements we make about finite
times but not those about infinite times, because cf
— 1+« if and only if f ~+ . Thus the Mgller wave
operators in the new description must be identical with
those in the old. Indeed we have

expli(H + b)ct] exp|- i(H, + b)ct]
= exp(iHct) exp(— iH,ct), (4)

and when { —+ % also ¢f —~+ *, so that the right-hand
side of Eq. (4) converges to the operator W, (H, H,) of
Eq. (1).

If we do not wish to emphasize the origin of the
changes discussed above in our scattering theory, we
can simply say that they arose as follows: In the ex-
pression exp(iHt) exp(— iH,t), substitute ¢(H,) and ¢(H)
for H, and H respectively, where ¢ is the linear function
on (- =, =) defined by

d()=cr+ch. (5)

Thus our statements about changing the description of
the theory lead to a simple instance of the invariance
principle: The M@ller wave operators do not change if
H, and H are replaced by ¢(H,) and ¢(H), where ¢ is a
real-valued linear function on (- e, ®), with positive
derivative. For future reference we note that if ¢ is
written as

oM =cr+d, (8)
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then this ¢ corresponds to the process of replacing ¢ by
ct and H, and H by Hy+d/c and H+d/c, respectively,

We now generalize these remarks. We first wish to
study wavefunctions ¢ that have kinetic energy restricted
to some interval (Ep E2]. We will say that ¢ has kinetic
energy in (E,, E,| if and only if ¥ belongs to the sub-
space of #/ corresponding to the portion of the spectrum
of H, in the interval (E,, E,]. The projection on this
subspace is denoted by Pg,,g,, so that the subspace it-
self is Py, g /. [Ps, 5, can be written as a function of
H, using the usual functional calculus for self-adjoint
operators: If xg Ey is the characteristic function of the
interval (E,, E,], then Pg,,g, is the same as Xz, 5, (Hy)- ]
If ¥ is in the subspace PEi’Ez’L/’ then exp(- iHyt)Y is also
in it, whatever the value of f. For this reason, when
considering evolution of wavefunctions according to the
free propagator exp(- ¢H,t), we may, if desired, isolate
and study separately the wavefunctions which have
kinetic energy in (E;, E,]. When studying these wave-
functions, we are at liberty to make a shift of energy
zero-point and change of time-scale. This would change
the propagator from exp(-iHyf) to exp[- i¢(Hy)t], where
¢ is a certain linear function, as described above.
(Note: We do not intend to change the class of wavefunc-
tions studied. The instructions are: For § < PEpEz’L/’
replace exp(- iHyt)y by exp[- i¢(Hy)t]d.) We can extend
this discussion as follows: Imagine splitting the real
line up into a (possibly infinite) number of disjoint in-
tervals. Each such interval determines a subspace of //
(namely, wavefunctions with kinetic energy in that in-
terval) and we could study evolution under the free
propagator by isolating the subspaces and studying the
evolution separately in each subspace. Because the
evolutions in the various subspaces do not “interfere”
with each other, there is nothing to prevent our making
a different choice of time-scale and zero-point energy
in each subspace (whimsical though this might seem).
The net effect would be to replace H, in the propagator
by various different linear functions of H; on different
subspaces of //. More generally, we could contemplate
decomposing the real line into sets B, other than in-
tervals, and carrying out the above procedure. // would
be split up into subspaces, each subspace consisting of
wavefunctions with kinetic energy in one of the sets B,,
and on these various different subspaces we would be
replacing H; in the propagator by various different lin-
ear functions of H,. We will now see that such a proce-
dure can be summarized by saying that the net effect is
this: On the entive Hilbevt space #{, we have replaced
H; in the propagator by the operator ¢(H,), where ¢
is one of the “generalized piecewise linear” functions
described below. For technical reasons, we ask that the
sets B, into which we decompose the real line are Borel
sets.

Definition: ¢ is a genevalized piecewise linear (GPL)
Junction if and only if ¢ is a real-valued function on
(~ =, ©) with the representation

BO=Z, (e + d)xa, O, 0

where ¢, and d, are real numbers, with ¢,> 0 for all »,
the B, are pairwise disjoint Borel sets whose union is
(= =, ), and Xz, 18 the characteristic function of B,:
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)1 ifreB,
X8, m‘{o otherwise ’ (8)

Clearly, if ¢ has the representation (7), then ¢ is a
linear function on each of the sets B,, but the linear
functions on different sets are different. If each B, is

an interval, then ¢ is piecewise linear in the usual
sense. If we form ¢(H,) according to the functional cal-
culus for operators, then xBn(A) becomes the projection
XB,,(Ho) onto the subspace of / consisting of wavefunc-
tions with kinetic energy lying in the set B,. On this
portion of the Hilbert space, ¢(H,) takes the value
c,H,+d,; the propagator exp{~ id(H,)t] appears as

exp|- i(c,Hy+ d,,)t], corresponding to the shift of zero-
point energy which takes H, to H,+d,/c, and the change
of time-scale which takes ¢ to ¢, /. Thus if ¢ is a GPL
function, replacement of Hy by ¢(H,) in the free propaga-
tor has the effect we have described above, and can be
considered as representing a different adjustment of
time-scale and energy zero point in different subspaces
of /. [As a technical point relevant in the comparison of
our results to Kato’s results, we note that if ¢ is a GPL
function then the absolutely continuous subspaces for H,
and ¢(H,) are identical. The proof is elementary. ]

We can carry out an entirely similar discussion for
the full Hamiltonian H. We say that a wavefunction
has fofal energy in the set B, if and only if ¥ lies in the
subspace of // corresponding to the portion of the spec-
trum of H lying in the set B,. The projection on this sub-
space is XB,,(H): where B, is as above. If ¢ is a GPL
function, the effect of replacing exp(- iH{) by
exp[— ¢ (H)t] would be to replace H in the propagator by
various different linear functions of H on various sub-
spaces of //, corresponding again to a change of time-
scale and energy zero point. An important point is that
the subspaces this time would not be the same as those
for the operator H;, because Xa,,(H) projects on the set
of wavefunctions with fofal energy in B, whereas xp (Ho)
projects on the set of wavefunctions with kinetic energy
in B,.

The processes of passing in the propagators from H,
to ¢#(H,) and from H to ¢(H) have this in common: In
each case one is dealing with an energy operator, and
selectively makes time-scale and energy zero-point
adjustments in the portions of the theory concerning
values of the energy operator in various sets. In both
cases, when dealing with energies in B,, we have
changed the time-scale by ¢, and shifted the energy
zero point by d,/c,. In this sense, we have done the
“same” thing to both energy operators. Our point now is
this: If the limit W,(H, H,) of Eq. (1) exists, and ¢ is a
GPL function, then

s-lim explip(H)t] exp[- ip(Hy)t]= wa(ﬁ, Hy). )

We give a formal proof in the next section. However,
the physical reason for Eq. (9) is easy to state: Equa-
tion (9) is a consequence of the conservation of energy,
To understand this, imagine taking a wavefunction

¥ with kinetic energy in the set B,. Then exp|- i¢(H,)t]d
is the same as exp|- i(c,H, +d,)t]d. Abbreviating

W.(H, H,)) to W,, we have the following: Because the
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limits in Eq. (1) are assumed to exist, the wavefunction
exp(- i(c Hy +d,)t]p will for ¢ — =« asymptotically agree
with exp[-i(c,H +d,)¢t]W,. But by conservation of ener-
gy, W,y has fotal energy in the set B,, so that
exp[-i(c,H+d,)t)W,) is the same as exp[— i¢ (H)t]W, .
Thus exp{-i¢ (H,)t]$ will asymptotically agree with
exp(- i¢ (H)t]W,9, and in a standard way this implies
that Eq. (9) holds at least when both sides of (9) act on a
wavefunction with kinetic energy in the set B,. Com-
bining these results for all the sets B,, we find that Eq.
(9) holds on the entire Hilbert space. The invariance
principle (9) is an expression of our freedom to adjust
the scale of time and the zero point of energy. Although
we used different subspaces when dealing with H, and H,
our treatment of both was inspired by the same thought,
and in the asymptotic limit our changes in these opera-
tors compensate to yield the original Mgliler wave
operators.

{I. INVARIANCE FOR GENERALIZED PIECEWISE
LINEAR FUNCTIONS

Theovem 1: Suppose that the limits W,(H, Hy) indicated
in Eq. (1) exist. Let ¢ be a GPL function. Then

s-lim explid(H)t]exp[- i¢(Hyt]= W,(H, Hy). (10)

Proof: We abbreviate W, (H, Hy) to W,. Because W,
satisfies the intertwining relations

exp(iHt) W, = W, exp(iH,t), (11)

we have
W, ~ exp(iHt) exp(— iHyt) = exp{iHt) (W, — 1) exp(- iHt).
(12)

Because the left-hand side of Eq. (12) converges to zero
as ¢t —+ «© and exp(iH?) is unitary, we therefore have

s-lim (W, - 1) exp(- iH,t) = 0. (13)
ot

Now Eq. (11) immediately implies that
explip(H)t]W, = W, exp[i¢p(Hy)t], (14)

and a calculation analogous to that of Eq. (12) shows that
expli¢(H)t) expl- ip(H,)t] will converge to W, as t =~z
if and only if

s-%im(W* - 1) exp[— ip(Hy)t]=0. (15)

.00

We now deduce Eq. (15) from Eq. (13). Let B, be the
Borel sets in the representation (7) for ¢, and let P, be
the corresponding projection operators defined using
Hy:

Pn= XBn(HO) (16)

Because the union of the sets B, is (- «, ©), we have
24 P,=1, 1)
n=0

where I denotes the identity operator on //. For this
reason, an elementary calculation shows that Eq. (15)
will hold if and only if we have for each n the condition

s-lim (W, - 1) exp[- i¢ (H()¢]P, =0. (18)

But we have

exp[- i¢(Hy)t]P, = exp|-i(c,H,+d)t]P, (c,>0), (19)
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so that (18) is an obvious consequence of (13). This
completes the proof.

Theorem 1 is interesting for several reasons:

(i) 1t holds under the sole assumption of existence of
the Mgller wave operators W,(H, H,).

(ii) The character of the functions ¢ involved is some-
what different from that of the Kato functions mentioned
earlier. A GPL function can be nondifferentiable in an
essential way (i.e., so that differentiability almost
everywhere cannot be achieved by correction on a set of
measure zero), and need not be increasing on any in-
terval. By remark (i), in any case in which the in-
variance principle has been proved for a certain type of
function 7, it can be generalized to composite functions
of the type ¢on, where ¢ is a GPL function.

(iii) If ¥ is any Kato function and €> 0, then there is a
GPL function ¢ such that simultaneously ¢ approximates
P within e and the derivative ¢’ approximates §’ within
€ on the entire real line. Given this fact and the in-
variance principle proved for GPL functions in Theorem
1, it is perhaps not so surprising that an invariance
principle can often be shown to hold for Kato functions,
although it should be emphasized that mathematically the
step from invariance for GPL functions to invariance
for Kato functions is entirely nontrivial. The meaning
of the invariance principle for Kato functions can be
regarded as a generalization of its meaning for GPL
functions, in which the adjustment of zero-point energy
and time-scale, instead of being carried out in discrete
steps on a countable number of sets, is carried out con-
tinuously along the spectrum of the energy operator. By
analogy with the GPL case, if § is a Kato function, then
writing

YO =9 WA +d(), (20)

we can think of the transition from H; to (H,) as mean-
ing that at the point X of the spectrum of H,, H, is being
replaced by H,+d(*)/¢’'(A) and ¢ is being replaced by
P’(\)t. Similar remarks apply to the transition from H
to ¥(H).

(iv) Since it is easy to think of bounded GPL functions,
it follows from Theorem 1 that whenever scattering the-
ory can be done, it can be done with bounded “Hamil-~
tonians” ¢(H,) and ¢(H). The author does not know
whether or not a technical advantage can be gained from
this remark. In any case, the remark provides a foot-
note to the usual statement that in most interesting
quantum-mechanical problems one must deal with un-
bounded energy operators. We now briefly study a class
of bounded GPL functions (selected mainly because of
their conceptual simplicity) which correspond to a sort
of repeated cutoff of the Hamiltonian.

Definition: For each p > 0, we define ¢, to be the
GPL function such that
(i) ¢, MW =x for re (- p, ]
and

(ii) ¢, is periodic with period 2pu.
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The representation of ¢, corresponding to (7) is

©

.M =27 (A~ 2np)x, (N,

n=-0

(21)

where I, is the interval ((2n— 1)p, 2n+1)p]. ¢, cor-
responds to 7o adjustment of time-scale, only a re-

peated adjustment of energy zero point. Using these

functions, it is easy to prove the following.

Theorem II: Let Hy and H be self-adjoint operators on
a Hilbert space /. Then the operators W,(H, H,) of Eq.
(1) exist if and only if the limits

S—%HE EXp[l(pu (H)t] eXp[— ld)u. (Ho)t] = Wg(‘pu(H), ¢u, (H()))
(22)

exist for all p >0 and are all the same. W,(H, H) is
then equal to their common value.

Proof: Although the proof presents no difficulties, we
give it for completeness: The “only if” part we have
already proved. We now assume that all the limits in
(22) exist and are equal, denoting their common value
by W,. Then for each u >0 we have

explio, (H)t]W, = W, exp[io, (H,)t] (23)
and
s—}LIE (W, — 1) exp[- i, (Hy)t]=0. (24)

Let P, denote the projection on the subspace of /4 cor-
responding to the portion of the spectrum of H, lying in
the interval (- i, i), and let @, be thé analogous pro-
jection for H and the interval (- u, 1]. Then

explio, (H)t1P, = exp(iH )P, (25)

and

Q.. explid, (H)t]=Q, exp(iHt). (26)
Thus multiplying Eq. (23) on the left by @, and on the
right by P,, we have

Q, exp(iH)W.P,=@Q, W, exp(iH )P, . 27
Now because P, and @, approach the identity as y — o,
it easily follows that
exp(iHt) W, = W, exp(iH,t), (28)
so that to prove exp(iH?) exp(- iHt) converges to W, we
need only verify that Eq. (13) holds. To prove that Eq.
(13) holds, it is enough to show that
s-%im (W, ~1) exp(- iH,)P, =0 for all p >0, (29)
i
But (29) is obvious because of (25) and (24). This com-
pletes the proof. Clearly, the proof actually depends
only on the existence and equality of the limits in (22)
for a sequence of subscripts u tending to infinity.

Theorem II provides a partial converse of Theorem I.
We remark that the general converse is false, as can be
seen by fixing p > 0 and taking H=Hy+ 2u. Then ¢, (H)
is the same as ¢, (H,), so the limit in Eq. (22) exists for
our one fixed . But of course the limit in Eq. (1) does
not exist,
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11l. SCATTERING THEORY WITH HAMILTONIANS
#{Hy) AND ¢(H)

Let ¢ be a GPL function. In this section we study the
consequences of accepting ¢(H,) and ¢(H) literally as
new Hamiltonians describing a physical scattering
process. We will try to distinguish which of the follow-
ing possibilities is correct:

Fossibility I: ¢(H,) and ¢(H) yield a scattering theory
which describes physical happenings quite different from
those in the scattering theory of H; and H. Neverthe-
less, the Mgller wave operators for the two theories
are the same.

Possibility II: The physical happenings in the scatter-
ing theory of ¢(H,) and ¢(H) are essentially the same as
those in the scattering theory of H, and H, and that is
why the Mgller wave operators for the two theories are
the same.

Qur interpretation of the change from H; and H to
¢(H,) and ¢(H) is that it is physically trivial (as far as
scattering theoretic statements go), at least on the sub-
spaces of // on which ¢(H,) or ¢(H) appear as linear
functions of Hy or H. This, of course, inclines us to
possibility II, and it is this one which we shall defend.
In order to discuss “physical happenings,” we need a
specific example of a scattering theory, which we take
to be the quantum-mechanical potential scattering the-
ory for a nonrelativistic spinless particle, We thus
take for // the space L%(IR®) of complex-valued square-
integrable functions on three-dimensional Euclidean
space, and we take for H, the (natural self-adjoint ex-
tension of the) operator — A/2m where A is the
Laplacean and m the mass of the particle. H has the
usual form

H=H,+V (30)
where V is the potential energy operator for the particle.
The “physical happening” to be discussed is the asymp-
totic motion of the particle as judged from the develop-
ment in time of its position probability density (ppd).

We summarize some known facts about the ppd of a
free particle in our theory.® Such a particle has a wave-
function ¥, of the form

¥, = exp(— iHyt)f (31)
with fe L¥(IR®). The ppd determined by ¥, is [9,(x) (2.
We can make the following two statements (see Ref. 9
for more details):

(a) The ppd determined by , can asymptotically for
large ({1 be replaced by Im/t1%! f (mx/f)|?, where f
denotes the Fourier transform of . The function Im/t3
X | f(mx/t)1? is the same as the ppd for a classical free
particle starting from the origin of coordinates at time
=0, and having momentum probability density given by
(k)% (i.e., it has the same momentum probability
density as the quantum mechanical particle under
consideration).

(b) The probability P(f,C) that the particle with wave-
function ¥, = exp(~ (Ht)f will asymptotically for ¢ =+ «
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lie in a cone C with apex at the origin of coordinates is
given by

P(f,C)= [, | F(l)|2ak, (32)

so that P(f, C) is the probability that the momentum of
the particle lies in C. (There is a similar statement for
the case t —~—,)

Statements (a) and (b) reinforce our belief in the
naturalness of the quantum-mechanical description.
Statement (a) is considerably stronger than statement
(b), and implies statement (b) directly. In order to de-
fend the idea that the physical happenings described by
qb(Ho) are not much different from those described by
H, (for large times), we will now show that if H, is re-
placed by ¢, (H,), where ¢, is as in Eq. (21), then (a)
and (hence) (b) continue to hold, while for a general GPL
function (and even for Kato functions n such that the
derivative n’ is polynomially bounded at infinity) we can
still salvage (b). The reason we get better results for
the functions ¢, is that ¢, represents no change in
time-scale in the various subspaces of // corresponding
to the intervals I, of Eq. (21). Statement (a) depends ex-
plicitly on the parameter #, and in order to obtain such
a result for an arbitrary f= /, one needs the same time-
scale on the entire Hilbert space. [We could in fact
prove that statement (a) continues to hold using any
(possibly unbounded) GPL function ¢ such that, in Eq.
(7), ¢,=1 for all » and the sets B, are intervals. Again,
this would represent no change in time-scale. The proof
for such GPL functions closely resembles that given
below for ¢,. A simple generalization of statement (a)
could be obtained by making the- same change of time-
scale on the entive Hilbert space. |

Proof of statement {a} with H, replaced by ¢, (H,)

Definition: f is a p-function if and only if (i) / belongs
to Schwartz’ space § (Ref. 10) consisting of complex
functions on IR® which together with all their derivatives
vanish rapidly at large values of IxI, and (ii) f (k)
vanishes in some shell around each of the spheres S, in
momentum space defined by

kZ
Sn= k%—(Zn—l)p}
for n=1,2,-+-.

The point of the above definition is that if fis a u-
function then 7 (k) vanishes near all the singularities of
¢, (k%/2m), with the result that exp[- i¢,(Hy)t]f is also
a p-function, as is easily seen from the equation

{expl- i¢, (Ht]f Hk) = exp[- ip, (B/2m)t]f (k).  (34)

It is also easy to show that for any fixed ., the p-func-
tions are dense in L2(IR%). We now define for n
=0,1,2, - the functions

(35)

%) = 1 if Q- 1Dp <k/2ms@u+ 1y,
/710 otherwise

80 that y, is the characteristic function of the portion of
momentum space lying inside the sphere S;, and each
other x, is the characteristic function of the portion
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lying between the two spheres S, and S,,;. Then

g;o Y. (K} =1. (36)
If f is a p-function, we define f, by

fo (%) = ml)gﬂ/exp(ik - X)X, (R)F (k) dk. (37
Note that

Tolk) = X, (k)7 () (38)
and

X =23 folx). (39)

Equation (39) holds both in the sense of pointwise con-
vergence and in the strong sense. The f, are clearly
pairwise orthogonal, by Plancherel’s theorem. We have

{exp[- ip(Ht]f,} (%)

- (25’37_; 2 f exp(ik - X) expl- i, (K*/2m)t] x,(K)F (k) dk)

= ——375(2171) / exp(ik - X) exp[- i(B}/2m — 2np)t] x, (K)F (k) dk
={expl- i(H, - 2nu)t]f,Hx). (40)

Thus
exp[~ ip(H)t]f= 24 expl~ i¢, (H)t]f,

=25, expl- i(Hy - 2n)t]f,. (41)
Now according to Ref. 9 we have
exp(- iHyt)f, = C,Q, f, (42)

where the action of @, and ¢, on ge L*(IR®) is given by

Q. £)(X) = exp(imx?/21) g(x) (43)

and

(C,2) (%) :(%) Ve exp(imxz/zt)g(—wi—x> . (44)

Also, for any function ge L?(IR%), we have

lim | exp(~ iHyt)g - C,gl|?=0. (45)

An elementary estimate using the orthogonality of the f,
now shows that for the p-function f we have
Lim || expl- i, (H)t1f -2 exp@npitlC,ful =0, (46)
w00 =
Now a priovi the sum 3, exp(2npit)c.f, is known to con-
verge only in the strong sense. But because (C,f;)(x) is
proportional to f,(mx/f), the terms in the sum are non-
zero on different disjoint sets, so that the sum always
reduces to one term at any point X, and hence converges

pointwise. Because of Eq. (46), the ppd determined by
exp[- i¢, (H)t]f can asymptotically be replaced by the
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ppd determined by 3 ;. exp(2npit)C,f,. But this latter
ppd is just

I ?0 exp(2nuit){C, f,}x)2 :?3(, | exp(2npit){C, £,Hx)|?

% Heudel= 2[5 fn(m—f“‘)lz

3| ~fmx
7(7)

so that we have proved statement (a) for the case when

fis a u-function. It is now not difficult to extend the re-

sult to any f in L2(IR%), using the fact that the y-func-
tions are dense in L(IR3).

2

m
:)_t )

We thus see that the ppd for the wavefunction
exp|- i¢u(H0)t1f behaves asymptotically just like the
ppd for the solution exp(- iH)f of the free Schrodinger
equation. If W, exists, then we can say something about
wavefunctions propagating under the influence of the
Hamiltonian ¢, (H) also. Namely, we have

s-Hm (exp(— ¢, (! ]W.f - exp[- id, (H)tlf)=0 (48)
and
s—}im (exp(~ iH) W, f — exp(— iHyt)f ) =0.

-too

(49)

On comparing these equations and using the fact that the
ppd determined by exp[- i¢, (H,)t]f and exp(~ iHt)f are
asymptotically the same, we see that the ppd’s deter-
mined by exp[- i¢, (H)t] W,f and exp(- iHt)W,f are
asymptotically the same, Thus asymptotically, at least,
the motion of free particles and scattered interacting
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particles does not change much when H, and H are re-
placed by ¢ ,(H,) and ¢, (H).

As remarked above, we can still salvage the scatter-
ing-into-cones formula (32) when we replace H, by
¢(H,), where ¢ is any GPL function, The proof is
straightforward but tedious, and we do not give it.
Further, using a slight modification of the proof of the
theorem of Jauch, Lavine and Newton, 1 it is not dif-
ficult to show that if n is a Kato function whose deriva-
tive n’ is polynomially bounded at infinity, then the
formula (32) is still valid when Hj is replaced by 7 (H,).
These results offer a {somewhat weaker) corroboration
of our thesis that the asymptotics of the theory are not
substantially affected by replacing H, and H by (ap-
propriate) functions of these operators.
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Extremely simple expressions are presented for the hitherto uncalculated invariants associated with the
Weyl conform tensor of the & = 2 Tomimatsu-Sato solution of Einstein’s field equations.

The determination of the Weyl conform tensor can
constitute a formidable calculational problem if one
considers a spacetime such as one of those dis-
covered! by Tomimatsu and Sato. In principle one can
employ the formulas published? by Bardeen or
Chandrasekhar and Friedman, as Tomimatsu and Sato
themselves attempted to do.® The complexity of the
problem is attested to by the fact that these authors
settled for a study of a single term in one component
of the Weyl tensor. We are happy to report that one
can by an alternative procedure evaluate the complefe
Weyl tensor, and the result is far simpler than one
might have anticipated.

1. WEYL TENSOR INVARIANTS

In the notation developed® by Hauser the invariant
Riemann operator is defined by

R=3%e*Nde,, 1)
where the ¢, (¢ =1,2,3,4) are basic tangent vectors.

If &® (8=1,2,3,4) designate those linear functionals
(differential forms) such that

e, e?=58 | @

then one can easily establish that

e, N eg. (3)
(Note that differential forms are written to the »ight of
vectors when they act as linear functionals upon those

vectors, but are written to the leff of vectors when a
dyadic product is intended.)

— 1,0 v o
IR=:e"e'R,

Consider the duality operator
s NP, @

which has two threefold degenerate eigenvalues +17.
From either of the three-dimensional subspaces select
the zmique eigenvector whose real part is equal to
-pla,Nar, where a, is the axial Killing vector, a;

is the temporal Killing vector, and p is the norm ot

a /\aT Designate this selected eigenvector of D by
B By construction, the inner product of B, with itself
is given by B,V B,= - 2.

1 ,u 0
ID=je"e%,,,

The eigenvector B, of ID may be augmented by two
other eigenvectors 73 and B_ corresponding to the same
eigenvalue as B, chosen so that B,V B, =B, 1 B.
=B, 1B, =B 1B =0and B,1 B, ——1 The f1e1ds B,
and B_ are determined up to a null rotation about Z B,

(and interchange B, B _). Therefore, the mere exis-
tence of two commutmg K1111ng vectors singles out an
almost completely specified basis for the bivector
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space. The freedom to perform null rotations about B,,
under which B, and B_ are multiplied by reciprocal
fields and B, “remains unchanged, corresponds to the
fact that one may perform Lorentz transformations
along the ¢ direction and rotations about the ¢
direction.

If one decomposes the Riemann operator R into a
part which commutes with the duality operator ID, and
a part which anticommutes with it, the former part is
essentially the Weyl conform part of the Riemann
operator, while the latter is essentially the Ricci part.
(The qualification may be deleted when the curvature
scalar vanishes.) In general five complex fields are
required to describe the Weyl conform part, but two
of these vanish automatically in the case of a stationary
axially symmetric field, when B,, B,, B, are chosen
in the manner described above. These five complex
fields may be defined as follows:

C,=B,(R1B,, (5a)
C,=~3B,T R B,, (5b)
Co=#B,T R1B,+3B.IT R1B, , (5¢)
C.,=-3:B,FR1B., (5d)
C,=B.rR7B. (5e)

In Ref. 5 were presented the more complete decomposi-
tions of the 2-forms

R B, =dv+ou, (6a)
R By=du-2wv, (6b)
R B =dw-wu , (6¢)

which can be seen to be compatible with the above de-
finitions of the fields C, (s=2,...,-2).

Under a null rotation about B, the field C, transforms
as a spin-weight s quantity. Hence C, and C C., are in-
variant under such null rotations. Consequently, in the
case of a stationary axially symmetric spacetime, we
may form from the Weyl tensor and the Killing vectors
two complex scalar fields I, and [, such that if B,, B,
B. are chosen in the way described earlier, then

C,=1,,

C,C,—9C 2=
The fields C, and C_, vanish identically, so that they
contain no additional information. In the case of a
Petrov type D spacetime the invariant /, vanishes. In

the case of the Tomimatsu—Sato solutions neither I,
nor I, vanishes.

(7a)
(7b)
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. TOMIMATSU-SATO § = 2 SOLUTION

Except for the Kerr metric, only three asymptotically
flat stationary axially symmetric solutions of Einstein’s
equations have been discovered. These three were dis-
covered by Tomimatsu and Sato (T—S), who employed
the complex potential formalism described in Ref. 5.

The simplest T—S solution corresponds to the com-
plex potential

£E=N/D,

where in terms of symmetrical x—y coordinates.
N=p*x*-1) + g (* = 1) - 2ipq xy(x® ~ %), (8a)
D=2px(x*-1) = 2igy(l —y?). (8b)

The constants p and g satisfy p?+4¢°=1. From the com-
plex potential

E=(-1)/(t+1)=(N-D)/(N+D) 9
the entire spacetime metric can be constructed by now

well-known methods. The result can be expressed in
the form

o[ (e 5) o]

- fdT - wd¢)? , (10)

where
f=(|N|?2=|D|?/|N+D|?, 11)
PP =p'(:? -3?)%/(|N|?-|D|?), (12)
=02 -1)(1-5?). (13)

til. CALCULATIONAL PROCEDURE

While in principle one should be able to evaluate I,
and I, without specifying the bivector basis any more
completely, our calculations were in fact based upon
the specific null tetrad introduced in Ref. 5; namely,

k=22 f1/2p(a, +way) + " ?ay], (14a)
m =212 f1/3p" (g, + way) - f/?a,], (14b)
t=212712p[ (2 - 1)1/2g +(1-3?) 2g ] . (14c)

The nonvanishing components of the Weyl tensor are then
given by

C,==-3[285¢6 + 1557, (15a)
Co=—13[-25*5¢ +f15+5)06E)] , (15b)
C_,=-3[25%5%E + 715+ )], (15¢)

but the evaluation of C, is facilitated by employing the
vacuum field equations to obtain the alternate equation

Co=v,W,, — U, » (16)
where the spin coefficients are given by

v, =~ 23 2f1/ 25", (17a)

w, == 23/ 2f1/ 25" M5%p | (17p)

vy == 232 {12550 - %6 (117¢)

w,,==2"3/2[ f1/2p75¥p o f1/ 2% E] | 117d)

An alternative method of evaluating C,C_, involves
using the Bianchi identities dJIR=0. In particular, we
employed the identities®

30, Co— 21225 C = _C,, (18a)
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3wkCO—2'”2f”?'6*co=vkc_2, (18b)
in order to take advantage of the earlier determination
of C,.
The simplicity of results for the 6 =2 T—S solution;
namely,
I, =p*Z-3T (19a)
I,=36p%Z"%p" (19b)
belies the amount of work which went into the deriva-
tion of these results. Here the fields T and Z are given
by
T=2-px(x*~3) —igy(3 %),

Z =(N+D)/(x?~y%).

(20a)
(20b)

IV. SINGULARITIES OF THE WEYL TENSOR

According to Eq. (19b) the T—S solution is Petrov
type D at all points for which p=0, i.e., on the sym-
metry axis and upon the surfaces x=x+1. Elsewhere
it is algebraically general. The Weyl tensor invariants
become infinite only where Z =0. It is in fact easy to
show that Z vanishes nowhere off the symmetry plane
y =0, while on the symmetry plane it vanishes only
at two ring singularities identified by Tomimatsu and
Sato.

One implication of the present work which will re-
quire further study concerns the “directional singular-
ities” at points where x*=1 and y*=1. Since the field
T is perfectly well behaved at such points, the nature
of the singularity is revealed by considering the be-
havior of Z as x*—~ 1 and y®*—~ 1. While the value attained
by Z in the limit depends upon the value of the ratio
a =(x?-1)/(1 —y?) attained in the limit, there is no
way to choose the limiting value of @ so that Z —~0.

We, therefore, disagree with the statement of
Tomimatsu and Sato” that it is possible to take the

limit ¥*—~ 1 and y*—~ 1 in such a way that the Weyl ten-
sor becomes infinite. Consequently, we feel that it
would be appropriate to ask whether “points” such as
x=1, y=1, are in fact surfaces, the nature of which
has been obscured by the symmetrical x—y coordinates.
We hope to be able to say more concerning this possi-
bility in the future.
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We present a general procedure for transforming asymptotically flat axially symmetric solutions of the
Einstein-Maxwell equations into solutions resembling Melvin’s magnetic universe. Specific applications
yield metrics associated with black holes in a magnetic universe. It is hoped that these solutions will be of
interest to astrophysicists studying gravitational collapse in the presence of strong magnetic fields.

I. INTRODUCTION

Seven years ago we showed® that stationary axially
symmetric solutions of the coupled Einstein-Maxwell
field equations can be generated from a pair of complex
potentials & and & satisfying the field equations

(Reé + | @) V2E = (VE + 28+ V) - VE,
(Reé + |@|2)V20 = (VE + 20 % V@) - VP,

1.1
(1.2)

Subsequently an elegant description of an invariance
group K of these equations was provided by Kinnersley. 2
Starting with any particular solution of the Einstein—
Maxwell equations one can now generate a large number
of solutions by applying elements of the group K, Cer-
tain specific elements of K are associated with trans-
formations developed independently by Harrison,?®
Ehlers,* and Ernst.® Other elements involve duality
rotations or gauge transformations.

In general the procedure described above produces
solutions which at this time seem to possess little
physical relevance. For example, the solution may lack
asymptotic flatness or some other desirable feature. If
physics journals are to be spared the proliferation of
articles presenting “new” solutions of no discernible
physical relevance generated automatically by using the
now well-known group A, then it is important that re-
lativists acknowledge some criterion for publication.
Because some pathological solutions have acquired a
degree of distinction (e.g., the NUT solution), the ap-
propriate place to draw the line is not particularly
obvious.

While the solutions we shall present in this paper are
not asymptotically flat, they possess an important re-
deeming feature; namely, they have nonsingular event
horizons. Since these are the first exact solutions of the
Einstein—~Maxwell field equations corresponding to
black holes in external magnetic fields, it is likely that
they will be of interest to astrophysicists. Our metrics
do not become asymptotically flat, but rather they re-
semble Melvin’s magnetic universe.® Only in the case
of a weak magnetic field can one describe the situation
as that of a black hole in an approximately uniform field,
but to our knowledge there is no evidence that nature
favors anything resembling uniform magnetic fields in
the vicinity of black holes, so one should temper one’s
prejudice. In fact, it is conceivable, although we have
not attempted to prove it, that our approach constitutes
the only way to add an external magnetic field to a black
hole solution without destroying the nonsingular nature
of the event horizon.
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While the potential astrophysical applications of our
solutions would, in our opinion, be sufficient to justify
publication of these solutions, an additional justification
can be found in the fact that the derivation of these solu-
tions involves an unconventional identification of the &
and ¢ potentials, which is obtained by interchanging the
roles of the timelike and spacelike Killing vector fields.
Our previous prejudice in favor of associating Reé with
the norm of the timelike Killing vector was based upon
the observation that the expression for ¢ was generally
simpler if you did this rather than associate Reé with
the norm of the spacelike Killing vector. Qur present
work demonstrates that it is sometimes advantageous to
sacrifice this simplicity.

il. ADDITION OF A MAGNETIC FIELD

Throughout this paper stationary axially symmetric
line elements will be expressed in the form

ds?=f"Y-2P%dtdix + p*dT?| - fldp - wdTY, (2.1)

where f<0. The complex gravitational potential £ and
the complex electromagnetic potential ¢ will be intro-
duced as in Ref. 5, but with ¢ and T or the 3 and 4 in-
dices interchanged. All the Einstein—Maxwell equations,
including Egs. (1.1) and (1.2), may be carried over
from Ref. 5 without modification.

Our prescription for introducing a magnetic field
involves employing a Harrison-type transformation,
namely,

Er= A, (2.2)
' = AP - 3B,E), (2.3)
where
A=1+B@& -1B3£. (2.4)

Under this transformation the fields f and w are trans-
formed into fields f’ and w’ given by

Fr=Ref’+ |0’ |2=| Al (2.5)
Vo' = |A|?Vw + pf (A VA~ AVA*), (2.6)
while the fields p and P are unmodified.
We shall illustrate the procedure by considering
Minkowski space. The line element
As?=[dz?+ dp? = dT?| + p?d ¢* (2.7

is of the general form (2.1), where f=~p° w=0, P
=p™, and d¢ =(2)"1/2 (dz+ idp). In this case the poten-

tials are given by
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(1):0, 6:—p2, (2.8)
Equation (2. 4) gives
A=1+1B20? (2.9

while Eq. (2. 3) yields the transformed electromagnetic
potential

&’ =5A"IB0?, (2.10)

and Eqgs. (2.5) and (2. 6) provide the transformed line
element

ds?= N[dz? +dp® —dT?]+ A2p? d¢2. (2.11)

From Eq. (2.10) the Cartan components of the magnetic
field are easily shown to be

H,= AB,, H =H,6=0. (2.12)

This solution, which is called Melvin’s magnetic uni-
verse, has been known for many years, and was studied
extensively by Melvin and Thorne. ®

H1. SCHWARZSCHILD BLACK HOLE

The application of our procedure to any static vacu-
um line element is quite simple, the result being a
static solution of the Einstein—Maxwell equations. By
writing the Schwarzschild line element in the form

ds?— ( dr?

—_— 2 - -9
A - (1 2m/1f)dT2>

+ 7% sin?8d¢?, (3.1)

and comparing this with the general expression (2.1),
we may identify the fields

f=-7%sin?0, w=0, p=(*-2m»)*/%sind,

(3.2)
P=(2sind)?, d{:(2)‘1/2( dr

(2 = 2mr)i7? +id9) :

Applying the procedure described in the previous sec-
tion, we generate the line element of a Schwarzschild
black hole in an external magnetic field; namely,

ar?
2_ A2 2 _ (1 _ 2
ds?2= A <1_2m/7 +r2d? - (1 2m/1’)dT)
+ A% sin?0d ¢, (3.3)
where
A=1+:B**sin®6. (3.4)

In this case the Cartan components of the magnetic
field are given by

H = AB cos?, (3.5)
Hy = - A2B (1 - 2m/7) /% sin®, (3.6)

where the angular component vanishes upon the event
horizon.

When m =0 the metric (3. 3) reduces to Melvin’s
magnetic universe, while for m# 0 there is an event
horizon at »=2m. From the form of Eq. (3. 3} it is
evident that standard Kruskal coordinates may be intro-
duced in order to extend the solution across the non-
singular event horizon. The only singularity of the Weyl
tensor occurs at =0, just as in the case of the usual
Schwarzschild metric.

Everywhere on the axis the magnetic field has the

55 J. Math. Phys., Vol. 17, No. 1, January 1976

value B,. When | Bym | <1 there is a region 2m < r<< By
outside the event horizon where the space is approxi-
mately flat, and where the magnetic field is approxi-
mately uniform. In the case of a strong magnetic field,
where | Bym| is of order unity, there is no region out-
side the black hole where the space may be described as
approximately flat or the magnetic field as approximate-
ly uniform. In fact, the stronger the field is, the more
it is concentrated near the poles =0 and 6=1.

This concentration of the field near the poles as B,
— » explains why the Hajicek inequality”

d 2
.r:f (% +RZE"+R2H2)A(16< 2, 3.7
0

can continue to be satisfied as B, . For our solu-
tion we have
A=A"gin8, B=0, R=2mA,
E:O, H= A-ZBOCOSG B

(3.8)

where A=1+ B,?m®sin®0. The integration over the event
horizon yields

I (1+4B2m®)(3 + 2B, *m?)
=TT 81+ BoRY

tanh-Y[Bm/(1 + B2m?)!/?
- ZBOWL(1 ¥ Bosz)slz .

(3.9)

The second term is negative definite, while the first
term is a monotonically increasing function of | By !,
and is always less than 4/3. Thus, our exact solution
easily satisfies the Hajicek limit with < 4/3.

IV. REISSNER-NORDSTROM BLACK HOLE

The application of our procedure to the Reissner—
Nordstrom black hole is not quite so simple. Since E
XH serves as a source for the twist potential, the trans-
formed metric is stationary rather than static. In this
case we may identify

& =-jecost, €=-1r*sin?0-e%cos?®. 4.1)

Consequently, the transformed metric assumes the form

ds®=|A|? (Tﬁ_ez—/? +72dE - (1-2m/r+ ez/rz)de)
+ [A "2 sin?6(d ¢ - ' dT)?, (4.2)
where
A=1+4B2(#*sin®0 + ¢* cos?6) — iB,e cos b, (4.3)

Integration of Eq. (2. 6) yields the following expression
for w’:
w’==~2B,er™ + Bjer+ 3B e’ s
- 3Bler™ (o — 2my + e®)sin?6 + const. (4.4)

Finally, the Cartan components of the electric and
magnetic fields may be evaluated from the electromag-
netic potential ¢’. The result is expressible in the
following form:

H +iE, = A*i(e/v*)[1 - 1B 2(7* sin®0 + % cos?6)]
+ B(1 - 3iBye cos 6)(1 - e?/»*)cos b}, (4.5)
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Hy +iEy=~ B A?(1 - 5iBe cos6)(1 - 2m/ v + e*/+*)* /% sin6.
(4.6)

V. KERR-NEWMAN BLACK HOLE

In principle nothing prevents one from writing out the
metric of a Kerr—Newman black hole in an external
magnetic field, although the evaluation of w’ and the
Cartan components of the electric and magnetic fields
is very tedious. The appropriate complex potentials in
this case assume the following forms:

a-ircos?

- —_—— 5.1
¢ er+iac059’ (5.1)
2ma+i(2m7’—ez)cos9>.
— 2 _ 2
&= <72+a a v+ iqcosf sin®6
a—ircost

- (4ma + ie? cos ) (5.2)

r+iacosf’

If preliminary studies indicate that astrophysics would
be well served by having the explicit solution for a
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Kerr—Newman black hole in an external magnetic field,
the rest of the calculation can be facilitated by electron-
ic symbol manipulation.®
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We relate the pure point spectrum, the singularly continuous, and the absolutely continuous part of the
spectrum of the Liouville~von Neumann operator [ H,] to the respective parts of the spectrum of the
Hamiltonian operator H. As a consequence of this result we obtain a theorem about the weak* limit of the

time evolution W () of a normal state W for t — oo.

1. INTRODUCTION

In quantum statistical mechanics, the time evolution
of a normal state (density matrix) W is governed by the
Liouville—von Neumann equation which reads formally

d

i— W=

i =, w].

(1)
Often, the spectrum of the Hamiltonian operator H is
known to some extent, and one would like to convert this
information to information about the spectrum of the
Liouville—von Neumann operator [H, -]. In this note,

we intend to solve this problem. Hereby, a recent result
by Prugovedcki and Tip® is extended to the continuous
spectrum. (In a more general context, Prugovedki and
Tip related the pure point spectrum of the respective
operators, a question which, for bounded Hamiltonian
operators, has also been studied by Moyal. 2) We will
apply our result to the problem of the existence of

w*-l}m wi(t). (2)
[W(t) denotes the time evolution of the normal state W
and w*-lim the weak* limit in the trace class. ] This
supplements the thorough investigation in Ref. 1.

2. NOTATIONS AND DEFINITIONS

Let // be a (separable or nonseparable) Hilbert space
and U(f) = exp(iH?) be a strongly continuous one-param-
eter unitary group on // with generator H. Let D(H)c 4
be the domain of H. H is the Hamiltonian opevator of
the quantum mechanical system considered. Let// ,
Hse and /4, be the closed subspaces of discontinuity,
of singular and of absolute continuity of // with respect to
H*%* and P,,, P, P, be the (pairwise orthogonal) pro-
jection operators with ranges /4 ., #.., and 4/,
respectively. We have P+ P, +P,  =1.

We denote by B,(//) the Hilbert space of Hilbert—
Schmidt operators on // [with the scalar product (A|B)
=tr(A*B)]. Then

B,(4) 2 A—U@RAU@)=UA (3)
defines a strongly continuous one-parameter unitary
group on B,(4#/).? Let § with domain D(9) C B,(4) be the
generator of U(¢): U (¢) =exp(i¢). P is called the
Liouville—~von Newmann operator corresponding to H.
For bounded H we have $A =[H,A]=HA - AH for all

A e By(4). If H is unbounded, this does not hold (cf.
Ref. 1), not even on D($). However, from the rep-
resentation of § as a multiplication operator in the
proof below, we see that D= {A = B,(4/)|AH < B,(4) and
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HA = B,({/)}c D(9) is a core for © and that § defined on
D is essentially self-adjoint. (By a theorem due to
Nelson [Ref. 5, Theorem 1.4] this can also be concluded
directly, not using the spectral representation of H.)
With this limitation in mind, we will keep to the sug-
gestive notation § =[H, - J. Let$ B ,, and P, be the
projection operators with ranges B,( ,L/)”, B,(4)g» and
B,(#),.» respectively.

Finally, we denote by o(A), aw(A), 0,{A), and o (A)
the spectrum, the pure point spectrum, the singularly
continuous spectrum and the absolutely continuous spec-
trum of the self-adjoint operator 4.

3. THE SPECTRUM

Theorem 1: Presuppositions as in Sec. 2. Then the
spectrum of [H, -] and the spectrum of H are related in
the following way:

o[H, - N={x~y|x,y c 0@},

o (H, - D={x=-p|x,y =0, (H)},

o (lH, - D={x-y 'xec_r:p—(IT) and y < 0, (H),

x e 0,(H) and y em, x,y €0, (H)},

o dH, )={x-y|eitherx =0 (H) orye 0, (H)
with x,y = o(H)},

BB\ //) =P, B,(H)P,,,

B, Bo(4) =P, By(4)P, & Py By(// NP, +P,),

B oo B H)=Bo(H)P o @ P B HNP,,+ P ).

Proof: (1) By the spectral theorem, there exists a
unitary mapping

V- k@g{Lz(R,duk) (4)

such that
VD(H)Z{w = kegl Lz(R, disy) de)k(x)}kEI e ¢ L¥R, d“’k)}
= =T

and for all ¢ VD(H)

(VHV=1) (x) = xp,(x), (5)
kel, xcR. Thus forall yc &, L*R,du,)
(VU(B)V-19) (%) = exp(ixt)p,(x). (6)

Let P,, keI, be the projection operator with range
LR, du.,). The imagell /(¢) of U(/) under V is given by
n(t) :32< ) LZ(R,duk)>a Ae VUOVIIA(VUV-)* (T
rET
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Since [P,, VU(£)V*]=0 for all R and all k<1, we

have PiVU(t)V'lA(VU(t)V'I)*Pj = VU(t)V'lP‘APJ(VU(t)V'l)*
Thus the closed subspaces PiBZ(EBkE[ L3R, dp,))P, re-
duce W(¢) for all i,5<1.

By Ref. 3, Theorem VI. 23, there exists a unitary
mapping

B, : L¥R?, dp X uj)—-P,Bz<e; LZ(R,duk)>Pj (8)
rET

such that the action of the Hilbert—Schmidt operator
B,,f, feL*(R? du,X,), is defined by an integral
operator:

(muf)d)j(x) = &f(x’ y)lb,(y) d#,(y) € LZ(R, du ,')- (9)
Since
VU V-4, ,HVUBVY* y,)(x)

=expl(ixt) (B;;f) [exp(~ixt)p,(x)]

= J, explixt) f(x,y) exp(= iyt),(v) di (),

(10)

we obtain
B, WO, f(x,y) — expli(x - )t]f (x,v).
By Stone’s theoremn,
D(B, vV, 1] P,B,P)B,)
={fe LAR? du ;< 1| fRZ fx—y]?

(11)

X | F(x,9) [2dp (%)X (y) < o}
and for all fe D(8,,{([VHV™?, - | P,B,P)®B,,)

B, VAV, ][ PB,P)®B,,: fx,y) k= (x =) f(x,9).
(12)

Thus [H, -] is represented as a direct sum of multi-
plication operators.

(2) Next, for all ¢,j I, we have to study the relation
between the spectrum of
Lt L3(R?, du; X 1 )2 f (%, 9) = (x = y) f (%, 9) (13)
on
DL ) =4f | [, [=y [P [ £ 9) [Pxdu (0% y(y) < =}

and the spectrum of

H,;:L*R,du;)  $(x) = xi(x) (14)
on
D@H)={y| [ «*[9(x) " dp (x) < =}.
The spectral measure E ;(-) of L, is (Ref. 4, X,
Example 1.9)
IE (&)1 = [, eh{x—yeal [fx,9)[* dp(0)xp,),
(15)

where ch{-} is the characteristic function of the set {-}.

(a) Let {x—y=z}n o(H,)xo(H,)= . Since o(H )X o(H,)
is closed, its distance d to the straight line {x-y=2z2
is positive, This implies |(x-y)-2z[*<d* for all
{x, y}e O(Hi)x o(Hj) and therefore z lies in the resolvent
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set of L,;. Let {x—y=z}no(H )X0(H )+ and {w,; w,}
be a point of the intersection. Since w;= o(H ) and

w,; G(H/), there exist vectors 7[Jn€L2(R, du.;) and vectors
¢, L3R, dp ) such that |lpll =1=ll¢ |l and li(x = w,) "y, ll
- o, i(y-w)"'g,li—oasn—= We have Z=w,—w, and

Z(X— w,‘)2 + 2(3} - wj)z = [(X— (4),-) - (,V - wj)]z'

This implies lI[(x - ) - 2]*y,¢ |l = = as n —= and there-
fore z € o(L,,). Thus we have shown that

oL ) ={x-y|x co(H,), y e olf,)}.
(o) L,, M L*R?, du?x ) has a pure point spectrum.

(e) L;, M L*R? du%xu,) has a continuous spectrum,
since the continuity of p§ implies

IE, ({2 DFiE= ], (fR chix-y=z}[f(x, ) du?(x))
Xdu,;(y)=0
for all f € L3(R?, du$X u)).

(16)

(d) L, I L¥R?,dus°> 1) has a singularly continuous
spectrum. There exists a measurable set A~ R with
A(A)=0 and p*f(Aa) = ui%R). (\ is the one-dimensional
Lebesgue measure. ) Let Qc R be the projection under
45° of the set AX{y =R |u?{y}) #0} onto the x axis. Then
M)=0 and, by (15), IE, () FIF=|lfI* for all f L*R?,
TSI U R

(e) L; M LR, du3ex ©3°) has a singularly continuous
spectrum. Let 4;, 4,CR be measurable and 4, be the
projection under 45° of A, XA, onto the x axis. Approxi-
mating A, XA, from outside by a union of open intervals,
one obtains k(Ap) <A(A,) +A(4,). There exist measurable
sets 4, A’CR with M(a)=0=x(a’) and pj{a)=pus*(R),
p3(Aa) = pu3(R). Let @’ C R be the projection under 45°
of AX A’ onto the x axis. Then A(2’) sA(A)+r(Aa’)=0
and, by (15), lE (2 fIP=IIf!I? for all f € L*(R?, du3®
X pge).

(f) L,; | L*R? du?°X ;) has an absolutely continuous
spectrum. Let A{(A)=0. By the absolute continuity of
13° we obtain

IE (&)F11%= [ (fR ch{x~yeal|fx,y)[* du:°<x))

Xdu,(y)=0 (17
for all fe L3(R?, dp ;X 11)).

(3) Using the invariance of the spectrum under unitary
transformations, we have

o JH, D= U o (L,),

s Py
i,JE&r

UPP(H) = jg I Onp(Hj)’

g ((H, D= i.jUGI oL,
GI(H):jé)l ol(Hj)i (18)
where I e {¢, sc,ac}. Furthermore,
$,= 2 BY (19)
i,i=1

holds in the strong limit, where m = {pp, sc,ac}and B}/
is the image under B, and V™! of the projection operator
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which has as range the m-subspace of L*(R?,du X u,)
corresponding to L,,. Inserting the results of (2) (a) up
to (2) (f) in (18) and (19) we obtain the assertions of the
theorem. (]

Covollary 2: [H, - ] has a pure point (singularly con-
tinuous, absolutely continuous) spectrum if and only if
H has a pure point {singularly continuous, absclutely
continuous) spectrum.

The results of Theorem 1 can easily be summarized
in the following figure:

S(H_)‘: pp toosc | oac :
PP |G, {[H,-1)
.
ac
- (20)

The proof of Theorem 1 shows that the spectrum of

[H, -] can be obtained by a simple graphical construction:

one has to project under 45° the set o(H)Xo(H) onto the
x axis. In an obvious way, one even obtains the de-
generacy of the spectrum of [H, +] (cf. Fig. 1).

We should note that the spectral measure equivalence
classes of [H, - | can be expressed in terms of those of
H, but it does not seem to be worthwhile to write down
this rather lengthy expression. However, the spectral
family € (x) of [H, * ] can easily be stated in terms of the
spectral family E(x) of H as

IEX)AIZ= fnz ch{x -y <y} tr[A*E(x)AE(y)] (21)

for all A = B,(/4/). A similar expression has been derived
by Prugoveéki. ®

4. WEAK LIMIT OF NORMAL STATES
Let B_{//) denote the C*-algebra of all compact

4 l
T T

121 ® 121 X

FIG. 1. We assume that the spectrum of H is simple and that

o) ={2,3}, o, (H) =[5, 7], The set o(#) xo(H) is drawn on the
right. Projecting under 45° this set onto the x axis, we obtain
the spectrum of [H, °] with o, ([H, <])={-1,0,1} and

o, ([H, *]) =[—5,5]. Above the x axis we marked the degener-

acy of the point spectrum of [#, <] and below the x axis the de-
generacy of the absolutely continuous spectrum of [H, °].
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operators on // and B,(//) the Banach space of all trace
class operators on //. Then B_(//)*=B,(/4) and the
weak* topology on B,(//) is the weakest topology on B, (#/)
in which all linear functionals trd -, A< B _(/), are
continuous. " If A, 0,(H), k<J, then let @, be the pro-
jection operator which has as range the eigenspace
belonging to A,. By Theorem 1, the projection operator
P, which has as range the eigenspace belonging to the
zero eigenvalue of [H, - ] is given byB A=} . ; Q,AQ,
for all A = B,(//). In addition to Ref. 1 we now have the
following:

Theovem 3: With notations and assumptions as in Sec.
2, let W< B, (/).

(1) If o, (H)= ¢, then

w*-lim U()WU(t)* (22)
{

exists and is equal to P W if and only if Q ,W@,;=0 for

alli#jcd,

(ii) If // is separable, then there exists a measurable
set AC R, of density zero?® such that

lim UOWU()* (23)

tvwtF A

w* —

exists and is equal to B W if and only if @ W@,=0 for
alli#je d.

Proof: If W < B,B,(4), the assertions are obvious.
Thus we can assume We (1= ,)B,(4).

€« 93y

<" ad (i): By presupposition and by Theorem 1,
WP, B(#). A theorem of ergodic theory ? implies

lim tr[AU(YWU(t)*]=0

te

for all A € B,(/{). Since B,(/) lies dense in B _(//), there
exists for every A € B_(//) a sequence A, < B,(4),
ne N, such that {{A, —A[l—0 as n— . Since

[tr[(4, - AuOwu]| <liwll, 1A, - All, (25)

tr[A U(t)WU(£)*] converges uniformly to tr[AU(£)WU(t)*]
which proves the assertion.

(24)

ad (ii): By presupposition and by Theorem 1,
W e (By.+ B,.)Bo(4). A theorem of ergodic theory® im-
plies
¢
.1
lim = [tr[AU(s)WU(s)*]|ds =0 (26)
0

for all A e B,(//). Since with 4/ B,(#4) is also separable,
there exists a set AC R, of density zero (where A may
be taken as a set of intervals such that there are only a
finite number of intervals of A in any arbitrarily chosen
finite interval)!! such that

lim  trl[AUWU@)*]=0

t=o A

(27)

for all A = B,(4/). (If 4/ is nonseparable, in general, one
cannot choose A to be independent of A.) The same ap-
proximation as above proves the assertion.

‘=7 If Q,WQ,+0 for some i #j < J, then, by Theorem
1, there exists an A ¢ B_(/4/) such that tr[AU(H)WU (£)*]
=expli(\; =1t ]trAW with trAW #0. Thus the limits
(22) and (23) do not exist. L]

Physically, a state We P, B,(//) is a scattering state
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which intuitively means that, in some sense, it “flies
off” to infinity. Theorem 3 makes precise that this
flying off takes place in the weak* topology and not, as
one would assume on first sight, in the weak topology
(in which the above mentioned limit, in general, does
not exist).
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On superpropagator for nonpolynomial Lagrangians with
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Using the exponential shift lemma, a method to evaluate the superpropagator for scalar functions of a
multiplet of fields is developed. As an application we obtain the generating function { T(Tr exp[A®(x))
Tr exp[A'®(»)])D, for vacuum expectation values { T(Tr®"(x)Trd™(p))Do, when @ is a 3 X3 matrix,
which is sufficient to get the results of Ashmore and Delbourgo on the matrix superpropagator for the

chiral symmetry case.

1. INTRODUCTION

Nonpolynomial Lagrangians involving functions of ma-
trix fields are of considerable interest because of their
application to nonlinear chiral Lagrangians and gravity
modified theories.! To perform calculations in these
theories, the vacuum expectation values (VEV) of time
ordered products of scalar and matrix functions of fields
are needed. Transform methods were used by
Delbourgo® to evaluate superpropagators of scalar and
matrix functions of fields with isospin. Later, using an
integral representation for determinant of a matrix
raised to an arbitrary power, Ashmore and Delbourgo®
succeeded in evaluating (T(Tré"(x)Trd” (v)));, ¢ being
vXv matrix field. This was used by them to calculate
matrix superpropagator. In this paper we develop a
method, based on exponential shift lemma, * to obtain
superpropagators for invariant functions of matrix
fields. As an application, we calculate (7(Tr exp[A®(x)]
XTrexp[2'®(y)])), and recover the results of Ashmore
and Delbourgo.

2. INTEGRAL REPRESENTATION FOR
SUPERPROPAGATOR

The exponential shift lemma* for a two point function
states that

T(: F(¢,(x) : :F' (¢, () :]
= (l/n*)I;lfdzuk exp(= 2 |u |?)
kR

X F(py (%) + cue) F' (¢, + coui), (1
where the ¢’s obey
€= A{x —y) (no summation over k)

and are otherwise arbitrary. We will assume all ¢, to
be equal and drop the index &.

Let us now consider the case of a ¥ Xv Hermitian
matrix field ¢,, satisfying, ’

(T( Dy 5(x) Do 10 (1)) g = 8yge By 1A = %) (2)
and consider the time ordered function
T F(,5(%) : : F (24,000 1], (3)

where F and F’ are assumed to be invariant under trans-
formations & -~ X&X-!. Equation (1) now reads

T F(@,5(0) : : F'(@,5(»)) :]
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= [(I(1/7) dugg) exp(— 27 (110512

@,B

XF(q)aﬂ(x) +cuaB)F,(q)uB(y) + C’u:B)' (4)
The vacuum expectation value of (3) is obtained by set-
ting =0 in the right-hand side of (4):
<T[: F(éma(x))z : F,(q’as(v))ibo

=(1/7"%) [ aU expl[~ Tr(U'U)IF(cO)F'(c'U¥), ()

where the matrix U is defined by
(U)GB = Uy 8+

Let X be the matrix which diagonalizes a matrix U
which has distinct eigenvalues, so that we have

U=XzZX", (8

where Z is a diagonal matrix. As the matrices not having
distinct eigenvalues form a set of measure zero, chang-
ing variables of integration from U to X and Z, we ob-
tain for (5)°

[ dx|J(X) 1 dzy 11 |2, ~ 2,]*
a [ 2¢:)

x expl— Tr(Z'X* XZ(X* X)L \F(cZ)F(cZ*), ("

where we have explicitly written the dependence of the
Jacobian on the elements z, of the diagonal matrix Z,
Following Ginibre,? integrations over X can be per-
formed to obtain

N[Ddzy Il |2, - 25| exp(~ 2 | 24 |2) F(cZ)F'(c'Z¥), (8)
o a@ o

where N is a constant. Integrations over Z’s can be per-
formed using techniques developed in statistical mech-
anics. ® Expression (8) is an integral representation for
time ordered product (5). This integral can be complete-
ly solved if F and F' are known. We demonstrate it for
the case of chiral superpropagator.

3. CHIRAL SUPERPROPAGATOR

We now use Eq. (8) to evaluate

A(W'A) =(T(Tr: exp[2&(x)]: Tr:exp[A'®®)]: ), (9)

where & is a 3X3 matrix, Using (8), we get
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A=N [ dz, dz,dz,
XIL |zq ~ zg) exp(= |21 |% = |2|% = (23]
a<B

%Y exp(Aczy ) 2 exp(ic’zy). (10)
@ 8

[l,l12, — 2512 in the above integral is the square of
absolute value of Vandermonde determinant of z’s, i.e.,

11 12
H"za_ZB‘Z: 21 2z 24
a<B

25 23 23]

|3 Tz& vex? |

= |22 228%0 22E%24 | (11)

22 Taxzl Dex%el |

Since the integrand in (10) is symmetric in 2’s, the
tirst column of (11) may be replaced by 3, 3z,, 3z in-
side the integral. z, can then be eliminated from other
two columns by subtracting suitable multiples of first
column., This process can be repeated once again with
Zp and z; to arrive at the result

A=8N [ dzydz,dzy exp(~ |21 |2 = |2,]2 = |24]®
}1 zx  z2x? |

X Y exp(rczy) exp(Mc’'z¥) |z, 23z, 2522,

o,B

0o

]

* *2,2
zy 2%z 23 231

=N' 25 Ay (12)
@,8

Each of the integrals A,; can be evaluated by integrating
each column separately and expanding the last two ex-
ponentials in powers of z, z*, respectively, and making
use of the relation

[ expl~ |z[%)zmz*" d% =16, (m +1). (13)

We then obtain the result
A(D)=9+3(1+¢+E8/6)(f = 1), (14)
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where we have fixed N’ using Al,.,=9 and £= "4,

Equation (14) agrees with the result for A(£) [ = 3a({)
in notation of Ref. 3] obtained by Ashmore and
Delbourgo. Also from their work it is immediate that
matrix superpropagator

([exp(\v5@()) sl exp(M vs@ (1) 1y g0

can be calculated using (14). Thus we completely re-
cover the results of Ashmore and Delbourgo for the case
when all components of ¢,; are independent. The method
described here has the advantage of being simple and
directly applicable to a large class of functions.

In the above formulation we have assumed that all
components of ¢ are independent and it is therefore not
applicable, in the present form, when this condition is
not satisfied. This excludes the important case of gra-
vity. We hope to extend the formalism to include the
possibility that ® may be symmetric’ enabling us to cal-
culate the superpropagator for gravity.
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n this case we will get integrals similar to that in Eq. (5),
but now U is restricted to be complex symmetric.
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We consider two examples of symmetrical perturbation problems in several complex variables and show
that special singularities appear. We then discuss the spectral properties of the perturbed operators in

connection with the involved symmetries.

Perturbation problems in several complex variables
may involve unexpected singularities which disappear
when all parameters except one are kept constant.* Qur
aim in this paper is to show how a simple symmetry
pattern could generate a certain class of such singu-
larities.

A TWO-DIMENSIONAL EXAMPLE

Rellich! considers a two-variable example of sup-
plementary singularities of the perturbed eigenvalues,
introduced by more than one complex variable. The
eigenvalues of the matrix function

Tk, ;)= ( o K ) : )

Ky —Ky
given by the branches of the function
>\(Kl”cz):(’(?'*'K:)l/z; (2)

are not differentiable at («,, «,) =(0, 0), although for any
fixed value of «, or «, (even for k, =0 or «k,=0) the one-
variable partial functions generated by them are analytic
in every neighborhood of the origin.

By writing (1) in the form
T(Ky, k) =K,0, + K0, (3)

where the ¢’s denote the usual Pauli matrices, its
covariance with respect to two-dimensional rotations
suggests that it be generalized as follows.

Let us replace (1) by

T(x)= fs () T+{ f, () W+ o £, (¥} (x,0,+ x,0,).
(4)

where x means (x,, x,) €% and x* means x} + x2. The f’s
are assumed to be analytic in some neighborhood U of
the origin of the x® plane. The eigenvalues will be given
by the branches of the function A : €% — € defined by

A = fo () + (L, ()P + Lf, ()P} 2172, (5)

The square root in (5) preserves the same singularity
as the square root in (2) if {f% + f2} does not vanish
anywhere in U, The singularity at x2=0 is (is not) re-
moved if {f} +f2} has a zero of odd (even) order at
x?=0. Any other odd (even) order zero of { /2 + f2} does
(does not) introduce a supplementary branching point

(in the x® plane) where the two eigenvalues of 4 coincide.
If f, =0 or f, =0 (but not both), then the eigenvalues are
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given by the branches of the function defined by the
formula

Mx) = fs (8 + f(a®) - (£P)H/2, (5"

where f, denotes f, or f, according to which of them is
nonzero and the singularities show the same pattern as
in the Rellich example. [If f,(x*)=0 for some xZ#0, then
the two branches of (5’) cross incidentally. ]

In order to understand the significance of the singular
behavior of the eigenvalues of T(x) at x=0, let us
examine its eigenprojections (and eigennilpotents) as
functions of the vector variable x.

The eigenprojections are given by the function

1 [Av(x®) U+ 0y fa(x®)] (x,0¢ + %,04) )
Plxy== (Il + 5 6
=3 (1 T ©
they are connected with the proper eigenvalues by the
requirement of taking the same branches of the square
root function.

We start by discussing the simplest case (essentially
the same as that of Rellich’s example) of when f, and f,
do not bring any complication (i.e., {f% +£2} (0)#0 and
thus there is a neighborhood U’ c U of x2=0, where the
only singularity of the eigenvalues, viewed as functions
of x%, is at the origin). In this case

P(x) =31 +/(x?) -],
where
X= (%,0,+ %,0,)/(x®)*/2,

and 7(x?) is a nonsingular matrix for x> V' {because
[7(x®)]?= - 1I}. It is obvious that x [and thus P(x)] is de-
fined only if ¥+ 0, i.e., if x is a nonisotropic vector in
C? (with the natural scalar product defined by the
quadratic form x+ x?). This focuses our attention on
T(x) in a neighborhood not only of x =0 but also of an
arbitrary nonzero isotropic x. The two eigenvalues of
T(x) collapse together at any such x and they must be
singular there since they branch (in x?) at x2=0. As x
approaches a (nonzero) isotropic x, on a path passing
through no other isotropic point, the two branches of x
are unbounded. That means that the two branches of
P(x) cannot be continued to x,, i.e., T(x,) may not be
decomposed into a direct sum as a continuation of the
decomposition of T(x) along the path. It is easy to check
that D(x,) € T(x,) - f; (0) I [where £, (0) is the common
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value of the two eigenvalues of T(x,)] is nilpotent (and
generally nonzero):

D(xo) =[£(0)x, + £,(0)x, )0, + [ £,(0)x, — £,(0)x,]o,,

Do) P ={[fAOF + [£,(0)F} (x} + 22)=0. M

Let us now focus our attention on x,=0. Passing through
%9 =0 along any complex “curve” with a definite “tangent”
at xy=0 is equivalent to passing along a “straight line”
directed along this “tangent. ” It is obvious that the
branches of x are constant and thus the two branches of
P(x) are continuous (even analytical) along a “straight
line” x =«x,, ke € if 2+ 0 (and thus x*# 0), and they
have finite limits at k=0, allowing them to be continued
at k=0. However, these limits depend on X and thus on
the “direction” of the considered “line.” This means
that T(0) may be decomposed into a direct sum in in-
finitely many ways, but none of these can be considered
the “true” one. Moreover, for a “straight line” x = «x,,
ke @ with x¥2=0, %% is 0 for any « = € and thus 7'(x) has
a unique eigenprojection (= fl) and has an eigen-nilpo-
tent (7) which vanishes at k=0 [and, if f,(0)1 + io, f,(0)
# 0, only there]. All these last conclusions are related
to elementary considerations on T(0)= f;(0)II. We can
infer, even at this elementary stage, that the nasty
singularities of the eigenvalues in Rellich’s example re-
flect in fact an over-all singular behavior of the whole
spectral problem of the “perturbed” T(x).

Concerning the role of the zeros of {f2 + f2}, it may
be checked that a zero at x* =0 brings no essentially new
structures: Its only effect is upon pole and branching
properties of A(x) and P(x). On the other hand, a zero
of {f2+ f2} at x*#0 makes the eigenvalues and eigen-
projections have a branching point (in the x® plane) con-
nected® with the occurrence of a nonvanishing eigen-
nilpotent D(x)=T(x) — f;(x?)- 1 along the corresponding
%% = const pseudosphere and with the unboundedness of
the eigenprojections around this pseudosphere,

AN O(3,C) EXAMPLE?

We start with a six-dimensional representation D of a
certain covering group 4 of O(3,C) of the following
form: SL(2, C) elements above proper rotations are
mapped into D®/2:9) ¢y D1/2:2) matrices? and the group
elements above space inversion are represented frivial-
ly (by the corresponding 6X 6 unit matrix).

We think of (this covering group of) 0(3,C) as of a
transformation group in €3 [this is possible by means of
the canonical covering homomorphism R : 4 — 0(3,C)]
and we shall be concerned with a perturbation problem
for an operator-valued function T :@C* — / (€°) which is
“covariant” in the sense that

D( @ ) T(x)D( @ -1) = T(R( @ )x).
To be definite, we write down the most general ex-
pression of such a T(xX) in the standard “angular mo-
mentum” basis* of DY/2 g pB3/B0 £ 3. T,

Aj/s1/2 and A, 4/, and defined by
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3x, V3« 0 0
1 V8x,  x 2 0
J. X ]
3/z 2 2x, -x, V3x, T Ponas
0 0 ¥3x, —-3x,
(9a)
X, X,
X = 1
Ji2 X=04,8 3 X, =%y ) (9b)
: V3 x_ 0
i 2%, -
Ocs { x, 2x,
1 0
Asjzapz X=75 | 3%
R
|
02)(4 ‘[ 02)(2 (gc)
At X=(Ag5,,2° %), {9d)

where x, means x, +ix,, then we take®

T(x) =A(X)P, ,, + a(x*)P, ,,
+ 2[B(X%)* (Jy 5 ° X) + b(x?) (I} 5 °X)
+ B (Ag)n,12°X) +BED) 2 (A 13,52 %)]
+4{C(X2)* (Ag 2,172 XV +7(X) * (g 5,15 X)* (Jy /50 %)
+H(X2) 2 (Jy,2°%X) ¢ (Ay5,5/2°%)]

+ 8D(x2) ° (A3/2,1/2 *X) (A1/2,3 72° x) (J3/z *X), (10)
where the “invariant coefficients”® A, a, B, b, 8,8,C,v,7,
D are supposed to be analytic functions of X? in some
neighborhood of the origin of the x% plane. The co-
variance (8) of T implies that, for any xc €3 and any

a <4, T(x)and T(R(«)x) have the same spectral prop-
erties: Their spectrum is the same and their eigenpro-
jections (and possible eigennilpotents) are related by a
similarity transformation [by means of D(«)]; this last
statement shows that their eigenspaces are isomorphic,
this isomorphism being given again by D(e«). Conse-
quently, spectral properties are determined by orbiis.
As there are essentially three different kinds of orbits
[the orbit of x=0, the isotropic cone (without x=0) and
nonisotropic pseudospheres], three different situations
are to be discussed:

(1) x=0. This case is trivial: T(0)=A(0) P; ,
+a(0) P, ,, from (10), and this formula completes
the spectral decomposition.

(2) All nonzero isotropic vectors form one orbit of
0(3,C), so it is enough to study T'(x), e.g. for
x®=(3,4/2,0).

(3) Similarly, for each pseudosphere of nonisotropic
vectors a representative of the form x*)=(0, 0, )
may be taken.
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The matrix of T(x©) is

-V38(0) - 57(0)\

!
/A(O) V3 B(0) -V3C(0) ~-3D(0) :
0 A(0) 2B(0) -V3 C(0) : 0 - B(0)
P(x©)— 0 0 A(0) V3 B(0) '. 0 0 (11)
o o o A i o0 0 _
0 0 B(0) V3p(0) | a(0) b(0)
|
V3 B(0 0 0
\0 0 0 B(0) : a(0) Y,

Its spectral decomposition is dependent on the relation between A(0) and a(0). If A(0)=a(0), it has only the eigen-
value A(x©") = A(0)=a(0) and a (generally nondecomposable) eigennilpotent D(x°) = T(x®?) — A(x?) - U, However, if
A(0)# a(0), then there are two eigenvalues A(0) and a(0) and T(x°’) can be decomposed as

T(xX©) = [P 00)(XC) +D 40y ()] + [P0y (x'") + D0, (x')], (12)

where the eigenprojections are

Py(x') =

- _ -~
C o Y3B(0)BO)  3[8(0)7(0) +B(0)y(0)] _ 6LB(0) - b(0)]B(0)B(0) _ Y3 B(O)  =V3¥(0) V3 3(0)[3(0)-b(0)]\
[A(0) - a(0)F TA(0) - a(0)F [A(0) - a(0)F } A(0)-a(0) A(0)-a(0) ~  [A(0)-a(0)F
01 0 V3 B(0) B(0) , 0 )
[A(0) - a(0)]* | A(0) - a(0)
00 1 0 : 0 0
00 0 1 | 0 0
————— A %‘____—“____—‘_—_'"——
0 0 —BO) V3 ¥(0) _ _ ¥3 B(0)[B(0) - 5(0)] : 0 0
A(0) - a(0) A(0) - a(0) [A(0) —a(0)P ;
V3 B(0) |
00 0 —_—— 0 0
A(0) = a(0 |
\ (0) — a(0) | .
(13a)
Py (V) = g = P oy x'?), (13b)

and the eigennilpotents are

D, ofx)=

/‘ |
V3 B(0) B(0) 3(8(0)7(0) + B(OY(0)] . [6B(0) - 36(0)]8(0)B(0) : -V3 B(O)B(O)\
0 V3 B(0) -V3 C(0)- A0 —a0) " 3D(0) - A(0) = (0) + [A0) - a(O)F |I 0 A(0) — a(0)
V3 B(0)B(0) |
0 0 2B(0) -V3 C(0) - A0) =0} : 0 0
o o 0 V3 B(0) |0 0
o 0 I 40 0 ’
V3 B(0)§(0) !
0 o0 0 “A00) = a(0) ; 0 0
0 0 0 0 | 0 0
\— | /
(14a)
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\

|
-~
0 0 0 - 3b(QBOEO) | V3 b(0)B(0)
A(0)-2(0)fF | A(0) - a(0)
|
000 0 | 0 0
000 0 o 0
Da(O)(x(O)): _—()—()—g~—__(]——— {—g 0 (14b)
V3 B0)3(0) | h
000 20 -a0) | © 5(0)
\o 00 0 : 0 0 )

The above results become slightly more transparent if the standard basis

3 3
{|§7§>7 ’%,%,, |%’_%>y ‘%’_%>; |%,%; |%Y_%>}

of D@/2:9 5 p1/2:0) i rearranged so that the sequence of the “J ” quantum numbers’ become monotonically in-
creasing or decreasing: Then T(x'°’) and all the summands in (12) become triangular matrices.

In the case of nonisotropic orbits, the spectral problem of T(x'*’) is an ordinary (one-parameter) perturbation
problem, with an analytical K dependence of the eigenvalues and eigenprojections. However, a better insight into
its “kinematics”® may be achieved by the same permutation of the basis vectors as above. It is easy to see that this

makes T(x*’) decompose into the direct sum

T(X®) = Ty )5 (k) B Ty yo (k) B T_y (k) ® Ty 5(k)

(15)

(the indices refer to “J,” quantum numbers) where T,3,,(x) are one-dimensional,

T,y ,2(K) =A(k?) + 3x B(x?),

and T, ,,() are two-dimensional,

T, /0(K) = -
' 2 (B(?) £ k3 ()]

The spectral problem of T(x%’) reduces practially to
that of T,, ,,(x).

For any given « the eigenvalues of T'(x%’) are paired
by the permutation induced by « < — k. This is a con-
sequence of T(-X) being similar to T(x): In particular,
for any rotation bringing (0, 0, 1) into (0,0, — 1) and any
a,c # which is mapped by R into this rotation

T(x“)=T(-x*)=D(a,) T(x*’) D(ex;"). (18)

The “kinematical” nature of the decomposition (15) may
be understood by realizing that:

(i) the stability group of x*’ contains the group
generated by 30, and 30,,

(ii) the representation of this group, contained in
the representation D ©/2:9q D®/2:9) of SL(2, C)
is deco. posed into (multiples of) inequivalent
irreducible representations, labelled exactly by
the “J,” quantum numbers.

The decomposition (12) has no similar “kimematical”
origin because the representation of the stability group
of X, [containing products of (trivially represented) in-
version elements with members of the group of the
matrices of the form (} {), &< €] contained in the rep-
resentation D®/2:% and D*/2:% of SL(2,C):

(i) is reducible but not completely reducible, and

(ii) all representations induced by D on minimal in-
variant subspaces and on “minimal”? factor
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(16)

A(K?) £k B(k?) + k2C(k?) + 13D (k) 2k[B(k?) x ky (k?)]

a(k?) £ kb(k?)

(1

spaces are trivial [i.e., they are given by
(§ §) —~the identity operator].

The next step is again to see how the spectral struc-

ture of T(x) behaves when x* -0, i.e., when x ap-
proaches 0 or a nonzero isotropic vector. The behavior
should be suspected to be singular in both cases as

(i) both orbits with x*=0 differ from nonisotropic
orbits qualitatively and

(ii) in our two-dimensional example [where T(x)
given by (4) was, as it is easy to check, co-
variant in the sense of (8) with respect to the
identical representation of the Abelian group gen-
erated by %oy and %oy, covering by the canonical
spinor homomorphism the group SO(2, C) of
proper orthogonal transformations of C?]T(x) was
generally singular near any point lying on any
isotropic orbit.

Let x approach any nonzero X, along a path which
intersects the isotropic cone in no other point except
x,. Then, along this path T(x) may be represented, for
any x#X,, as

T(x)=D(e (x)) T(X)D(e "}(x)), (19)

where X= (0,0, 1) is in the same orbit as x and @ (x) is
chosen so that R(e (x))¥=x. Now, a possible choice for
a(X) is
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1/V2
(A = x5)/V2 x_

~x,/V2 N

(At x)VEN ) (20)

a o(x) =

and any other is obtained therefrom by multiplication on
the right by an arbitrary diagonal SL(2, C) matrix, i.e.,
with

¢ 0
@.= , (21)
0 ¢!

with an arbitrary { = €. This ambiguity does not affect
T(x) as R(@,)X=X and D in (8) is a representation. The
eigenprojections (and eigennilpotents) of 7T'(x) are func-
tions of T(x)1°:!!; thus they are related to those of T(x)
by the same similarity transformation [by means of
D(e(x)) in (9)] which relates T(x) to T'(X).

The matrix of D(&,(x)) for an x in the standard basis
is a direct sum of @ (x) itself and of D®/2:%) (e, (x)); the
standard matrix of the latter is!?

pGrzo (& B
v &

a® V3 o238 ¥3 ap? 83
V3 a%y alad+28y) BBy +2a8) V3%
- V3 ay?  y(By +2a8) 5{as +28y) V3 52 ’
y° V3% V3 452 5%

(22)

with coefficients which are polynomials in those of its
arguments. This means that if x—x,, D(&,(x)) behaves
singularly {because of the negative powers of » oc-
curring in it). Thus the eigenprojections of T(x) may
also be expected to be singular when x —x,.

We showed previously in (15) that the decomposition
of unity associated with T(X*)) = T'(X) is generally a
refinement of that of J,. By standard arguments this
implies that the decomposition of unity for 7(x) (with
x2#0) is a refinement of that of J:X. But the eigen-
projections of J *X may be obtained from those of J, by
the similarity transformation mediated by D(«,) and an
explicit computation shows that they are singular (as
their matrix elements contain negative powers of 1).
This means that (at least some of) the eigenprojections
of T(x) must have (at least) these singularities in 1. (We
only discuss here the behavior of these singularities on
a path reaching x, and not in a whole neighborhood of

X;-)

The pairs of eigenvalues of T(x) may be regarded as
“branches” of functions which are analytical in (x2)*/2,
When x — X, these “branches” collapse together. Thus
we see that the analytical features of the spectral be-
havior of T(x) in a neighborhood of any (nonzero) iso-
tropic vector are similar to those met in our two-di-
mensional example. With inessential modification of the
arguments, our conclusions concerning the spectral
problem around the origin can also be taken over from
the previous example. The singular behavior of the
origin is related to its “having no direction, ” i. e.,
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(i) to its being stable under any rotation [while T(x)
is nontrivially affected by rotations of x] and

(ii) to its property that any of its neighborhoods con-
tains both isotropic and nonisotropic vectors.

SUPPLEMENTARY REMARKS AND CONJECTURES

We are now able to draw some general conclusions
concerning the behavior of the spectral properties of a
symmetrically perturbed operator near “singular”
orbits. '

Let G be a Lie group and IE a finite-dimensional com-
plex vector space; let R: G~ / IE) be a group homo-
morphism, allowing G to be regarded as a (left) trans-
formation group in IE. Let /) ¢ IE be a domain sym-
metrical under G-action and containing the origin of IE.
Let HI be another vector space with a linear representa-
tion D : G— / (HI) of G acting in it. The representation
D generates another representation D:G—~ / (/ (HI)) by
the usual rule: for any g= G and B / (HI) set

D(g)B=D(g) AD(g™). (23)

Let, further, T:/) — / (H) be a map, equivariant with
respect to R and /), i.e,, let the diagram

T

) [ (TF)
R I B
prr '/ (H)

be commutative. This means a covariance scheme
which generalizes (8): For any g G and x =)

T(R()x)=D(g) T(x)D(g™). (24)

It is obvious that such a scheme must impose severe
restrictions on the spectral properties of each T'(x)
(xe ). We do not intend now toc go into an exhaustive
study of its implications. Nevertheless, without any
new or deep ideas some immediate conclusions may be
formulated. The set of eigenvalues of T(x) is G-in-
variant, i.e., it is constant along G-~orbits in /). Thus
the eigenvalue set may be viewed as a function of these
orbits. Up to an isomorphism of the eigenspaces, the
spectral decomposition of T'(x) may also be viewed as
a function of the same orbits, [This isomorphism is
given, obviously, for an x and x’ in the same G-orbit,
by any D(g) where g with R(g)x =x' may be any member
of a right coset of the stability group of x. ]

Our previously stated examples and others involving
orthogonal groups make us conjecture that the
“kinematical” (i. e., symmetry-generated) singularities
might be understood in terms of the topology of the
orbit space /)/R(G). Such singularities of the spectral
structure of a symmetrically perturbed operator seem
to occur along “singular” orbits. [We call an orbit
whose stability group is K « G “singular” if it has no
neighborhood containing orbits whose stability group
(in G) are not isomorphic to K. ] In particular, the
origin of IE (“no perturbation”) should always be a
singular point of the spectral behavior of a symmetrical-
ly perturbed operator.

In addition, our first example shows that an en-
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larging of the symmetry group may rule out some “non-
kinematical” singularities. [There, a restriction of the
form f,=0 or f, =0 could be interpreted as replacing
covariance merely with respect to (the spinor covering
group of) SO(2,C) by covariance with respect to (the
spinor covering group of) the full 0(2,C). ]
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Determination of nearest neighbor degeneracy on a one-

dimensional lattice
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A general method is proposed for the determination of the degeneracy of nearest neighbor pairs on a one-
dimensional lattice. Explicit results are given for the special cases involving two and three kinds of

molecules.

. INTRODUCTION

In statistical mechanical models involving nearest
neighbor interactions, the most general form of the
interaction energy on a one-dimensional lattice can be
written as follows:

E({"l},{"u})=; Ving +z 421/ A +08,)Vyny, 1.1
where i,j=1,2++-F, indicate different kinds of mole-
cules and run through these values independently in the
summations; », is the number of ith kind of molecules;
n,; is the number of nearest neighbor pairs between ith
and jth kinds; V, and V,, are the energies for each jth
kind of molecule and for each (7j) kind of pair. Suppose
that the 7th kind of molecules are rigid rods of length
(I; - 1)a with a being the unit length of the linear lattice,
then each ith kind of molecule will occupy I, lattice
sites. Hence, assuming the total lattice sites to be L,
we have

Zil,n,:L. (1.2)

If the total number of molecules is N, we have further

%) ny=N. (1.3)
The partition function corresponding to a definite fixed
set of {n,} is given by
z({n = (2) exp| - BE({n,}, {n,, D] (1.4)
'llj
with 8=1/k7T. The partition function corresponding to a
fixed (N, L) is
Z(N,L)= (E) z({n,}), (1.4
ny
where the summations of {n,j} and {n,} are to be carried

out in accordance with the given restrictions such as
(1.2) and (1. 3).

In the case with only two kinds of molecules, the
problem can be reduced to several special cases. If
we take V,=-V,=H, V,,=V,,=-V,,=J, we have the
well-known Ising model®; if we take V,=U, V,=0, V,;
=V, V,=V,,=0, we have the lattice gas model.?
These models are essentially equivalent, and various
methods® can be applied to solve the problem without
having to determine degeneracy of nearest neighbor
pairs. However, in general, knowledge of the degener-
acy associated with each type of nearest neighbor pair
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will be required in order to calculate partition function
and thermodynamic quantities.

In a recent article, McQuistan®* has determined the
degeneracy of nearest neighbor pairs for the special
case involving two kinds of molecules with /,=1 and [,
=2 (one kind of molecule is the vacant site and the
other kind of molecule is the dumbbell) generalizing his
previous results for the caseof [, =1,=1.

In the following, we shall show that for a system with
two kinds of molecules, the degeneracy of nearest neigh-
bor pairs can be readily determined for arbitrary 7, and
l,. We shall generalize the results to a system involving
three kinds of molecules. A further generalization to
the situation involving more kinds of molecules can be
similarly done with increasing labor,

Il. ASYSTEM WITH TWO KINDS OF MOLECULES

We place n, molecules in a row thus creating maxi-
mum number of #,, pairs which is

(2.1)

Now if we put one molecule of the second kind at one end
of this row, we create one (1,2) pair without affecting
the (1,1) pairs. However, if we put one molecule of the
second kind at any intervals of the row, we destroy one
(1,1) pair and create two (1,2) pairs. Now if we place
one molecule of the second kind next to any molecule of
the second kind already in the row, we create one (2,2)
pair without affecting the (1,1) pairs or (1,2) pairs. It
is clear that the determination of the degeneracy will
depend on the conditions at the ends. Denoting the end
conditions by [4,j], meaning that the left end is occupied
by the sth kind of molecule and the right end by the jth
kind of molecule, we have the following four cases.

(1) [1,1]: Let x be the number of intervals of (1,1)
pairs selected to place one molecule of the second kind
at each of those x intervals. Then we have

() =m - 1.

(2.2)
(2.3)

2x =n,,,
m=1—x=mn, =y, -

Now there are (n, — x) numbers of molecules of the
second kind left unused. Since each time we place one
of those unused molecules next to any of the x molecules
already placed in the row we increase one (2,2) pair
without altering »,, and »,,, we conclude that

Ry = X =1TNpg. (2.4)
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The number of ways to select x intervals from a total of
(n, — 1) available intervals is given by
n -1

(2.5)
x

To place {n, ~ x) indistinguishable molecules into the
distinguishable x positions is a Bose—Einstein type of
distribution, and the number of ways is given by
7, — 1
’ @.6)
x -1
Thus the degeneracy for this case of given x with the
end condition [1,1] is
-1 -1
A=) (2.7)
X x=-1

Here and in the following, it is to be understood that
®)=0if g>porp, g<0.

(2) [1,2]: In this case, we first place one molecule of
the second kind at the right end of the row, then select
x intervals to place x molecules of the second kind. We
thus have

2x +1=ny,, (2.8)
n~1-x=ny, (2.9)
My =1 = %=1y (2.10)

After selecting x intervals from (n, — 1) total intervals,
we now have to place {#, - 1 - x) molecules into (x + 1)
positions. Hence the resuit

n -1 ny,—1

Ap= (2.11)

x X

(3) [2,1]: By symmetry this gives the same result as
(2.11); hence

n, =1 ny,—1
A21:A12f: (2.12)
x x
(4) [2,2]: By the same reasoning, we have the
following:
2x+2=np, (2.13)
m =1 =x=mny,, (2.14)
Ny =2 = X =11y, (2.15)
n, =1 N, ~ 1
Ap=| 2 (2.16)
x x+1

If condition (1.3) is relaxed, we have from (1. 2)

m=( _lznz)/l1§ (2.17)

thus the degeneracy corresponding to odd #u,, is obtained
from a combination of (2.8), (2.11), (2.12), and (2.17)
as

-1 _ _
Al =24,=2{ (L -1m)/1, -1
(mz = 1)/2 (132 = 1)/2
(ny, 0dd). (2.18)
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Similarly for even n,,, we obtain from (2.2), (2.7),
(2.13), (2.16), and (2.17)

(L -1m,)/0, -1

Alpyy)= [ "2—1
=) 1 .
7, — 1 (L -1,m,)/1, -1 ( 2. 19)
n/2 (n/2) - 1 7y, €Ven), .

To obtain the degeneracy in terms of n,, or »n,,, we
simply add up all the 4;, and express the x in terms of
Mg OT 1,,. Thus

np—1 (L —1m0/1, -1
Alny,) = :
My — Mgy — 1 Np — Mgy
s 7y~ 1 (L -1,m)/1, -1
Hlg —Hgp— 1 Mg = oy — 1
n, -1 (L =1m,)/1, -1
+
iy = Mgy — 1 g — Hipp = 2
_[n-1 (L -1m)/1,+1 (2.20)
L3 Ry — Ny
n,+1 (L - Lny)/1, -1
Alnyy) = (2.21)
(L = 1n5)/1; — Ay 1
The partition function is given by
Z({n,}) = exp(- Bo,) Liexp(~ Be,x)
n -1\ [n,-1
X X w1 exp(— 6902)
n =1 n,—1
+2
X X
n -1 -1
+ exp(89,) |, (2.22)
x x+1
where
2 2
0, =2V, +25 (n, - 1)V,
i=1 i=1
Py= sz - Vlzy
@3 =2V, = Vi, = Voo (2.23)

1l. ASYSTEM WITH THREE KINDS OF MOLECULES

In the previous section we have started from a situa-
tion with ny,=n; — 1, 1y, =0, n,, =0 and ended up with
four different possible arrangements. Now we shall
start from each of these different arrangements to gen-
erate possible arrangements with introduction of the
third kind of molecules, The principle is to create n,,,
Nogs Mgg, frOm ny,, and n,, without changing »,,. Since
this process will depend on the end conditions, we shall
again divide the discussion into the following cases.
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(A1) [1,1]—~[1,1]: A notation of [,§]—[I,%] means
that in the original arrangement the left end is occupied
by the jth kind while the right end is occupied by the jth
kind, and, with the introduction of new kinds of mole-
cules, the end conditions change to [I,%].

Let y be the number of the third kind of molecules
placed into y intervals of »,,, and z be the number of
the third kind of molecules placed into z intervals of
Ny,; then in this case we have

np=2x, ny=m-1-x-y,

M3 =2y, Npp=my—X -2, 3.1)

Moz =22, Mgg=ng—Yy —Z.

Since after establishing [1,1] with two kinds of mole~
cules, we have ("1")"*) ways of choosing y intervals from
(n, - 1 - x) intervals of (1,1) pairs; ("2;*) ways of choosing
z intervals from (u, — x) intervals of (2,2) pairs and
(374) ways of distributing (n, —y ~ 2) unused and indis-
tinguishable third kind of molecules into (y+ 2) inter-
vals. We have all together the following degeneracy:
ny—1 Ny—x\ fr,—1-x

np—1\fn -1

A=
y+z-1 z ¥ x-1 x
(3.2)

(A2) [1,1]—[1,3]: Applying the same method, we have
for this case

nmy=2x, ny=n~1-x-y,
M =29+1, Mpy=n,—-x-~2 (3.3)
1y =22, Nyy=ng—1-y-2z,
na=1\[rny—x\ [n,=1=x\[1n,-1\[n, -1
A, = .
P\ y+z z ¥ x-1 x (3.4)

(A3) [1,1]~[3,1]: The results are the same as (A2).
(A4) [1,1]~[3,3]:

ny 2= 2x, np=n-l-x-y,
n13:2y+2: Rog =Ny ~X =2, (35)
Ny =22, Mgz =13 =2 -y -2,
ng—~1 Hy=x\ [ny—1-x n,—1 \[n, -1
A=
y+z+1 z y x-1 x
(3.6)
(B1) [1,2]~[1,2]:
mp=2x+1, ny=n-1l-x-y,
(3.7)
3 =2y, Npp=ty—1-x-2,
Mg = 22, H3g=MN3 =Y — 2,

ng ~1 nyg=1=x\ [, =1 =x\fn, -1\ fn, -1
B, =
T \yt+z-1 z y x x

(3.8)
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(B2) [1,2]—~[1,3]:

np=2x+1, ny=n-1-x-y,
Nz = 29, Npp=ny—1~x=—2, (3.9)
Mgy =22+1, ng=n-1-y-2,
ng=1\ ny=1-x\{n -1-x\[n,-1) [n, -1
B.= y+z z ¥ x x
(3.10)
(B3) [1,2]~[3,2]:
np,=2x+1, ny,=n-1-x-y,
My=2y+1, ngp=n-1-x-2, (3.11)
Nyy = 22, Nga=ny—1 -y -2,
B,=B,.
(B4) [1,2]—[3,3]:
ma=2x+1, n,=n-1-x-y,
Myg=2y+1, np=m-l-x-z, (3.12)

Ny =22+1, mgp=my3—-2-y-2,

_f n-1 ny—1l-x\ fny=1=x\[n~-1\[n -1
=
y+z+1 z y x x

(C1) [2,1] - [2,1]: The results are the same as (B1).

B

(C2) [2,1].[2,3]: This case gives the same results as
as (B3).

(C3) [2,1]—~[3,1]: Same as (B2).
(C4) [2,1]—~[3,3]: Same as (B4).
(D1) [2,2] -[2,2]:

Mp=2x%+2, ny=m-1l-x-y,

3= 2y, Mgp=1y =2 =% -2, (3.14)
Moy = 22, Mgy =My =y = 2,
D= ng—1 ne—=2-x\ {n,-1-2x\ [un,-1\ [n, -1
=
y+tz-1 z Y x+1 x
(3.15)
(D2) [2,2]—’[2’3]
Mp=2x+2, my=m-l-x-y,
M =2y,  Mp=mp-2-x-2z, (3.16)
My =22+ 1, nyp=ny;—-1-y-~gz,
ng~1\ [n, -2 -x\ [n,-1-x\ fn,-1\ fn, -1
D,=
y+z z Y x+1 x
(3.17)

(D3) [2,2] —~[3,2]: Same as (D2).
(D4) [2,2]—~[3,3]:

1p=2x+2, ny=n-1-x-y,
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5 = 20, Mop=MNy~2 —x — 2, (3.18)
oy =22+2, Ngg=my-2-y-2,
ng -1 np—~2=x\ [, =1=-x\fn,~1\ /n,~1
D,=
y+z+1 2 y x+1 X
(3.19)

If we wish to express the above results in terms of any
three of n;; instead of x, y, 2z, all what we have to do is
to express x, y, z in terms of the desired set of {nij} in
each case and add up all the nonconflicting cases. If in

one case n,; is required to be odd and in the other case

the same "y is required to be even, then it is an exam-
ple considered to be conflicting. If we write

n=(L =, = Ing)/1,, (3.20)

the restriction due to molecular sizes can be taken care
of. Finally the partition function can be written as

Z({n,}) = exp[ - B(C, - Vn)]xzj_‘/z expl - B(C,x + C,y + C,2)]
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X{A, + 24, exp(- 8C,) + A, exp(- 28C,)

+ 2B, exp(~ 8C,) + 2B, exp| - B(C, + C,)]

+ 2B, exp[- B(C,+ Cyp)]

+ 2B, exp[- B(C,+ C, + C4)]+ D, exp(- 28C,)

+ 2D, exp[- B(2C, + C,)]+ D, exp[- 28(C, + C,)]},
(3.21)

where

Mw

Co= (Vi+Vidng, Ci=2V,,=Vy =V,

1

)
-

cz= 2V - Vii= Vs, C3= 2V - sz ~ Vass
C4: Vie=Vaay Cs=Vi3=Vy, Co=Vys = Vig.

'E. Ising, Z. Physik 31, 253 (1925).

*T.D. Lee and C.N. Yang, Phys. Rev. 87, 410 (1952).
3G.F. Newell and E.W. Montroll, Rev. Mod. Phys. 25, 253
1953).

‘R.B. McQuistan, J, Math, Phys, 15, 1192 (1974); J. Math.
Phys, 13, 1317 (1972).
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A solution of the Korteweg-de Vries equation in a half-

space bounded by a wall
H. E. Moses

Air Force Cambridge Research Laboratories, Hanscom Air Force Base, Massachusetts 01731

(Received 14 July 1975)

We give a solution of the Korteweg—de Vries equation in the half-space 0 < r < o with the boundary
condition V(0) = 0. The boundary condition may be interpreted as the requirement that the plane which
bounds the half-space be a rigid wall. Aside from possible physical interest, this solution, which is obtained
from one of the potentials for the radial Schrodinger equation which do not scatter, appears to indicate
that the radial Schrédinger equation and the corresponding Gel’fand-Levitan equation play a role in the
case of the half-space bounded by a wall similar to that of the one-dimensional Schrodinger equation

(— o < X< ) and its corresponding Gel’fand-Levitan equation in the more usual full space treatment of
the KdV equation. A possible interpretation of the solution presented in this paper is that it corresponds to
the reflection of a wave by a wall, in which the incident wave is singular and the reflected wave is

nonsingular but highly dispersive.

1. THE KORTEWEG-DeVRIES EQUATION. THE
RADIAL GELFAND-LEVITAN EQUATION.
POTENTIALS WITH ZERO SCATTERING PHASE
AND AMPLITUDE

The Korteweg—De Vries equation for V(x,¢), namely,
V,-6VV +V,_ =0, )

has become a subject of intense study, since it was
shown (Ref. 1) that general classes of solutions can be
obtained in the full space — « < x <« by mapping the
problem to the inverse problem for the Schrédinger
equation in one dimension. A rather complete bibliog-
raphy is given in Ref, 2.

One of the important classes of solutions are obtained
from potentials for which the reflection coefficient is
zero. Such potentials, derived in Ref. 3, lead to closed
form solutions of (1) which correspond to the motion and
interaction of highly stable modes called solitons.

It is natural to see whether one can find analogous
solutions in the half-space 0 <y <, (We shall use r»
as the space variable instead of x when working in the
half-space, since ¥ represents the radial variable in
the associated radial Schrédinger equation.) In the case
of the radial Schrddinger equation the continuous spec-
trum eigenfunctions y(»|k) satisfy

—(ff,:— W |B)+ VOl | k) = RPo(r | k), (2)
where we require
90[0)=0, L y0[x)= <%) Y (3)

as boundary conditions. It can then be shown
lim [4(r|#) - @/M"2| £(k)| sin(er + 8)]=0, 4)
where flk) is the Jost function and § =6(%) is the phase
shift. The eigenfunctions for the point eigenvalues E
satisfy the equation
g )
=l (1) + V() (r) = Ey,(v). (5)

Unlike the situation in full space (-« < x < «) where the
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point eigenvalues E, must be negative, in the present
case E; may be negative, zero, or positive. For E,<0,
E;=0, E,;>0 we must choose as boundary conditions
$,(0)=0. It is convenient to chose the second boundary
condition, namely the derivative at the origin in the
following way:

d
7y (0 =(-E)!/? for E, <0,

= (Ei)l/z
=1

for E,>0, (6)
for E,=0.

The normalizations of the eigenfunctions y,(») are
given by

f0 [y, Par=c,. (n

Since y,(7) is real, the C, are positive,

In the direct problem, the potential V() is given,
together with the boundary conditions at »=0 for #(r| &)
and ,(#). It is required to find the Jost functions flk)

(= 1 Ak)I exp(:8)) from the eigenfunctions of the conti-
nuous spectrum using the asymptotic form (4). Further-
more, it is required to find the point eigenvalues E, and
the normalizations C,.

In the inverse problem, one gives |f(k)!, E,, C, and
calculates the potential V(r) which would reproduce
these quantities. For brevity we shall not give the
Gel’fand—Levitan algorithm here but refer instead to
Ref. 4 which also refers to earlier papers of others.

The analog of reflectionless potentials of Ref. 3 are
those for which |f(£)| =1. The simplest of these poten-
tials are given in Ref. 4. For E,> 0 and E, =0 it is pos-
sible to find potentials for which 6(k)=1 also so that
SiR)=1. The potential for which there is only one point
eigenvalue E, =0 is the simplest of these and is given by

V(r)=6r(® - 20)/(+ )2, A=3C,. (8)

[1t should be mentioned that this potential for phaseless
scattering was obtained earlier in Ref. 5 using more
special methods. ]
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FIG. 1. Velocity as a function of distance from wall for t<0.

2. THE SOLUTION OF THE KORTEWEG-De VRIES
EQUATION. INTERPRETATION

In Eq. (8) let us now consider X as a function of the
time ¢ where { is a parameter., On substituting into the
K-dV equation (1) we obtain a solution if

d
Et—)\(t) =12
or
AMe) =12¢ (9)

on choosing the origin of time appropriately.
Thus we have as a solution of the KdV equation:
Vir, t)=6r(+® = 241)/(+® + 120)%, (10)

This solution is very different from those obtained
using the Gel’fand—Levitan equation over the whole real
axis.

For t>0 and »> 0, V is continuous. Moreover, V(0,?)
=0. Figure 2 shows the highly dispersive wavelike
motion which this solution exhibits, since V is zero at
r=0, we may interpret »=0 as being a wall, if V is in-
terpreted as being a velocity. From Fig. 2 we see that
the “wave” has a minimum value at »,, =1.205 #*/° and
that this minimum traveals with the velocity v, =0.402
t2/3, V goes from its minimum value which is negative
to its maximum which is positive through a stagnation
point » = 2,88 */® which travels with the velocity v,
=0.961 (2/%, The position of the maximum #»__, is given
by 7,,,=4.35 #*/° and its velocity is v, =1.45 17/3,
Finally V(r,,,,t)=~-0.851 t2/3 V(y_, ., )=0.171 1/
From these quantities one can infer the shape of the
“wave” and the character of its motion. For brevity, we
shall not discuss this matter further.

Equation (10) also represents a solution with a wall
for t< 0. However, now V is positive for all »> 0. Fur-
thermore, V approaches infinite values on either side of
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the asymptote 7, =12"/%(-¢)*/3=2.289 (- )'/? which
travels with the velocity v, = —0.763 (- )'/®, Figure

1 gives V for two values of { when { is negative. One
sees that the solution for negative ¢ represents a singu-
lar “wave” moving toward the wall.

If one combines the motions for /<0 and /> 0, one
obtains an analog of a wave reflected by a wall in which
the incident wave is singular and the reflected wave is
continuous and highly dispersive, The situation for ¢=0
requires comment. In this case the asymptote for the
motion /< 0 coincides with the wall, and one has an ex-
ceptionally singular situation in that the velocity is in-
finite, not zero, at the wall. One can either take the
attitude that at /=0 one has a kind of “impulse” on the
wall at the instant of reflection or one can take the more
general attitude that the solution for /< 0 cannot be con-
tinued into the domain /> 0, One simply has two dif-
ferent solutions in the two time domains. However, we
do not wish to belabor the point, since our principal
objective has been to show that one can obtain solutions
in a half-space with a wall,

3. DISCUSSION

The fact that a solution of the inverse scattering
problem for the radial Schrodinger equation yields a
solution for the half-space with a wall suggests a con-
nection between the inverse scattering problem for the
radial equation and the KdV equation in the half-space
generally. We are now investigating the possibility of
such a connection, though the situation is much more
complicated than the relation between the KdV equation
and the inverse problem in full space. First of all, the
point eigenvalues are functions of time, instead of being
constant as in the full space case. Then too, the discrete
and continuous spectrum are strongly coupled in time,
again unlike the situation in full space. As a con-
sequence, it appears that the solutions to the inverse

4 —
3 fr
t=0\
2 ( \
\'A
| N
A~
" L ;_:\
V ,'/ L \[————\L—_‘ A r
v /e a 5 6 7
i} 1 t= 2
N
a B :
'\ :/t=.25
' y
2L\
T
v
5l Vot
Vo
[
ARV,

FIG. 2. Velocity as a function of distance from wall for t> 0.
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problem for which the continuous spectrum gives no
contribution (i.e., for which {f(2)| =1) but for which
E,#0 do not give solutions to the KdV equation in the
half-space with a wall,

In Ref. 6 solutions of the nonlinear Schrédinger
equation in the half-space are discussed, though no
explicit examples are given as in the present paper. The
half-space solutions are obtained from the inverse
problem in the full space by imposing suitable symmetry
conditions. The authors find that they cannot relate the
inverse problem in the half-space to their nonlinear
equation in the half-space. We believe that the analog
of our solution is not among those which can be obtained
by their method. Moreover, the relation between our
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approach and that of Ref. 6 requires exploration of
some difficulty, but this exploration is certainly
worthwhile,

1C. 8. Gardner, J.M. Greene, M.D. Kruskal, and R. M,

Miura, Phys, Rev. Lett, 19, 1095 (1967).

C.S. Gardner, J.M. Greene, M.D. Kruskal, and R.M.
Miura, Comm, Pure Appl, Math, 27, 97 (1974).

31, Kay and H.E. Moses. J. Appl. Phys. 27, 1503 (1956).

‘H. E. Moses and S.F. Tuan, Nuovo Cimento 13, 197 (1959).

5V, Bargmann, Rev. Mod. Phys. 21, 488 (1949),
®M.J. Ablowitz and H, Segur, J. Math, Phys. 16, 1054
(1975).
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Multigroup neutron transport. I. Full range*
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A functional analytic approach to the N-group, isotropic scattering, particle transport problem is
presented. A full-range eigenfunction expansion is found in a particularly compact way, and the stage is set
for the determination of the half-range expansion, which is discussed in a companion paper. The method is
an extension of the work of Larsen and Habetler for the one-group case.

I. INTRODUCTION

Ever since Case! successfully applied the method of
singular eigenfunction expansion to the one-speed, one-
dimensional neutron transport equation, there have been
efforts to generalize the treatment to the multigroup
case. The basic equation considered for N groups is the
following:

1

u :7 w(x,u)+2¢(x,u)=f C(i,s) ¥lx,s)ds. (1)

-1
Here ¥ is a column vecior whose elements ¥; represent
the neutron angular density in the ¢th group, 1 <i <N,
and ¥ is a diagonal matrix whose ith element o, is the
neutron cross section in the i¢th group, ordered such that
0y >0y >see>0,=1. The elements C;; of the transfer
matrix C represent the neutron scattering from group

j to group i.

The somewhat simplified isotropic case (in which C is
independent of u and s) is treated in detail by Siewert
and Zweifel? for a rather special situation physically
relevant to radiative transfer, namely the determinant
of every minor matrix of C of rank >1 was assumed to
vanish. The more general case, in which the deter-
minant of C was assumed not to vanish, has turned out
to be rather difficult. Part of the problem is notational
(a difficulty also encountered in Ref. 2), because the
continuous spectrum is highly degenerate and because
adjoint solutions must be introduced to calculate ex-
pansion coefficients. This leads to a bookkeeping task of
no small magnitude. However, more fundamental is the
difficulty that a satisfactory proof of half-range com-
pleteness of the singular eigenfunctions hinges on the
signum of the so-called partial indices of the matrix
Riemann—Hilbert problem, and these indices turn out to
be difficult to pin down. A review of the partial index
problem, and references to some attempts to deal with
the problem have been given by Burniston ef al.?

The notational problem alluded to above was solved
in 1968 by Yoshimura and Katsuragi,* who also proved
the relevant full-range completeness and orthogonality
theorems. The more general case, in which C is a fune-
tion of angles, was discussed by Silvenionnen and
Zweifel,® where the further notational difficulties are
handled, and sufficient conditions for full-range com-
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pleteness presented. Half-range completeness can be
deduced, in fact, if C is a symmetric matrix, as one
obtains for example in thermal neutron problems with
Maxwellian weights.

In 1973 a new development occurred in transport
theory, namely the publication of a paper by Larsen and
Habetler® in which the full- and half- range formulas
originally obtained in Ref. 1 by heuristic arguments,
were derived rigorously through functional analytic tech-
niques. {A later paper by Larsen’ exiended these resulis
to the anisotropic case, still, however, in one group
theory.) These papers served not only to mollify the
mathematicians who objected to Case and his disciples’
cavalier treatment of the continuous spectrum, but also
gave the hope of simplifying and generalizing the original
resulis. For example, a paper® based on the results of
Ref. 6 has extended the original expansion theorems of
Case to an enormously larger class of functions. Basi-
cally, Ref. 6 made it possible to deal with linear op-
erators in a Banach space, where previously one had to
consider rather involved singular integral equations.
Further, as we see by comparing the present paper with
Ref. 4, the Larsen—Habetler technique is simpler and
clearer than the standard technique of obtaining adjoint
solutions, using Schmidt orthogonalization procedure,
and calculating a large number of normalization
integrals.

We propose to use the Larsen—Habetler technique to
present an explicit solution to the half-range problem
for a suberitical medium. (The extension to the more
general case has not yet been found.) The solution will
be given in terms of certain matrices X and ¥ which
factor the dispersion matrix A.

It is well known, for example, in one-speed theory'
that the matrix X which solves the Riemann-Hilbert
problem also factors the A matrix [in Case’s notation,
(1-cNV3-2HX(Z)X(- Z)=A(Z)]. This “identity” as
Case refers to it, in fact provides the basic connection
between two apparently dissimilar methods for solving
the same problem, i.e., the Case “eigenfunction ex-
pansion, ” leading to a Riemann—Hilbert problem, and
the Wiener—Hopf method.
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In the multigroup case, it turned out, perhaps because
two matrices X and Y are involved in the factorization,
that the Wiener—Hopf approach was more practical. The
existence of the Wiener—Hopf factorization has been
proved by Mullikin, ® and although explicit solutions have
not been found except in some special cases !’ they can
be determined as the solutions of a certain nonlinear,
non-singular integral equation. Our approach is re-
miniscent of that used by Siewert, Burniston, and
Kriese!! for the two group problem, their work being
based on earlier work of Siewert and Ishigura.!? These
authors introduce matrices H and H* which are, in fact,
closely related to our matrices X' and ¥"!. (Along these
lines, one should also note a paper by Burniston,
Mullikin and Siewert. !?) Perhaps even closer to our ap-
proach is that of Pahor and Suhadole, ! who uses a full
range expansion to deduce the half-range formulas,
again for subcritical media. These results are, however,
based on heuristic arguments similar to Case’s original
work.

In the present paper, we will apply the Larsen—
Habtler technique to the full-range, N group problem,
partially to demonstrate that the functional analysis can
be carried through to this case, and to set the stage for
the half-range analysis which will be published separate-
ly. Throughout both papers, we shall restrict our at-
tention to the case that C is a constant matrix, and detC
#+0. We work in the function space U defined by

U={¢|uy; is differentiable in x € (- ©, «) and is
Hélder continuous in pe[-1,1]}

The idea of the Larsen—Habetler technique is to re-
write Eq. (1) as

9 -ty _
5 VHETY=0,
where the reduced transport operafor K™, which acts
only on u, is given by (for fixed x),
1
K)o, 1) = (1/wZ9(x, 1) = C [ 9lx,s)ds], 0.
(2)

The bounded inverse K of K-! and the resolvent (I - K)™!
are then constructed. The identity

Pp)=1/2m) §, (2] - K)'p(p) dz (3)

is then used to obtain the full-range expansion. In Eq.
(3), and otherwise as convenient, the dependence of ¥ on
x will be supressed.

In this paper, we study the properties of K and (2]
- K)™! in Sec. II and derive the full-range expansion in
Sec. III. We outline the solution of a typical transport
problem in the Appendix.

l. THE RESOLVENT OPERATOR (z2/ - K)™!

In this section we construct the bounded operator K
and study the properties of the resolvent operator
(I - K)™!, In addition, the following notation will be used
in the subsequent analysis:

B=(z -2C)C"'z,
D(Z, H) = (ZI— “E-l)-1)
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and
1
g”:J:q s"g(s)ds,

where g may be an element of U or an NXN matrix.

The operator K™! in Eq. (2) can be easily inverted to
yield K:

Kn=2"un+ By, (4)

Note that the diagonal terms of K are one-speed oper-
ators, while the off-diagonal terms are of rank one. If
it is assumed that det (Z - 2C)#0, then K will be a
bounded operator of U. This determinant condition is
related to the critical condition for an infinite medium?!?
and would reduce in the one-speed limit to the condition
c#1, which we note is also required by the analysis of
Ref. 6. (Note the definition of the matrix C; the factor
1/2 which multiplies the scalar ¢ in the one-speed equa-
tion has been absorbed into C.)

We next determine the resolvent operator (zI - K)"!
from Eq. (4) by a straightforward calculation and write
it in the form

(eI~ K)™" 9(u) =D, u)[¥(n) + A (2) (D), ()],
where the dispersion matrix A is defined by
AR)=B-Dz). (5)

The function (zI — K)™'p is analytic in z except for a
branch cut along [~ 1, +1] due to the branch cuts in the
element of A and poles at the zeros of the function

Qz)=detA(z).

A simple calculation shows that the zeros of Q are
eigenvalues of K.

The above definition of A differs from that, for ex-
ample, of Ref. 4 by an immaterial multiplicative factor
which does not affect the condition Q(z)=0. In fact, A

b Im Z

G
N

FIG. 1. The contour 7, surrounding the spectrum of K is de-
formed into the contour I" surrounding the continuum plus
circles T'; about each eigenvalue.
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above is related to A usually encountered in the litera-
ture by Ay =CZ'AZ™!, The elements of A(z) are even
real functions of z. Thus the eigenvalues of K occur in
pairs; if v; is an eigenvalue, so is — v;. We shall label,
for convenience, — v; =v;,,, where n is the number of
pairs of eigenvalues. For simplicity, we will assume
that each v; is a simple zero of @ and lies outside the
branch cut [- 1,1]. Although these restrictions are not
necessary for the validity of the subsequent analysis,
they simplify the paperwork. These restrictions can be
relaxed and with some modifications the analysis would
follow in a similar manner.

Il. THE FULL-RANGE EXPANSION
We can use the identity in Eq. (3) to write for lul <1,
Plp) = (1/2m) §_ Dz, w)9(u) + A 2Dy )] dz,

where 7 encircles the spectrum of K which consists of
the point spectrum given by the points {v,}, i=1,...,2xn,
and the rest of the spectrum (the union of the continuous
and residual spectrums) given by the interval [-1,1].1¢
We now deform the contour 7, as shown in Fig. 1, into
small circles I'; centered about each eigenvalue v;, plus
a contour I' about the branch cut {~ 1, 1] to obtain,

n

$(u) =20 b, (1) + o),

=1

o,

where

Yo ()= (1/2m) §p DG, w)e(p) + A @)(DY) ()] dz, (6)

and

Ur(u)=(1/2m) $. Dz, w)p(n) + A™ (@) (DY) (2)]dz.

Because of the simple pole of the elements of A" (z)

atz=v;, i=1,..., 2n, we can use the residue theorem
to write
b, () =[Q/ W) D@, ) A (v) (DY), ), (7)

where Q’(V,-):[dQ/dz]z=,,i and A,(z) is the transpose of
the cofactor matrix of A(z). We note that $,; is an eigen-
vector of K since from Eqs. (4), (5), and (7) we have

[vid - K9, =[2'(w) ][I~ B'D,(vy)]
XAc(Vi)(DZ!))1(Vi):0- (8)
Equation (7) can be expressed as the product of an
eigenfunction of X, ¢,,, times an expansion coefficient

a; as follows. Note that each column of A (v;) is pro-
portional to the eigenvector of A(v;), i.e.,

{Ac(ui)]lm:amﬁi(ui)s (92)
where

Alvy) Blv;) =0, (9b)
and a,, m=1,...,N, are constants depending on the

elements of A.(v;). Then we can write
%i(li):ai(f)vi(}i),
where
¢, (1) =D(v;, p) Bv,) (10)

is the discrete eigenvector obtained in Ref. 4, and
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=

Al DY) (W3} [ ()] (11)

a; =
¢ 1

3
[

is the expansion coefficient.

We now turn to the continuum term, ¥ of the eigen-
function expansion. Define

M@E)= A @) (D) (2). (12)

Then we can write

Yr(w) = (1/2m0) ¢ DG, pu)[d(n) + M(z) ) dz. (13)

An application of the Cauchy integral theorem reduces
the first term on the rhs of Eq. (13) to ¢¥(i). To evaluate
the remaining term, we deform the contour I as shown
in Fig. 2. The contribution from I'_; and T",; can be
shown to vanish {see, for example, Ref. 6). The con-
tribution from I’ and I',, give the first and second terms
on the rhs of the following equation:

[(1/270) $ DGz, ) M) dz) = (1/200) { [ Dv, )

X[M~(v) = M*(»)]dv};

+ 2 M3/ o)) + Mi(n /o)),

i=1,...,N, (14)
where we use the notation that M*(v) and M~(v) are the
boundary values of M (v +ie) as e —~ 0 respectively. The
integral on the rhs of Eq. (14) is understood to be the
Cauchy principal value. If we further denote

[A(Vv IJ')]ml = 6m lé(omy_ H)’
and
bilogp) ‘ Ol \ <1,

[Z,DE(LL)]:‘ =
0 otherwise,

where 6,,; and 8(c,,» — 1) are the kronecker delta func~
tion and dirac delta distribution, respectively, we can

TImZ

FIG. 2, The contour I'" about the continuum is squeezed down
to the contour T'V'T_{WT 4T,
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write

dr(p) = (1/2m0) f (D, W {M () - M*(v)}
+mEaly, u)(20sw) + {M W) + M) ]dv.

Noting from Egs. (5) and (12) that
Pe(p) =1/2m)= A (V) + A (V)]
X[M*(v) - M* ()] - 2} (v) + M ()],

we can write

)= [} B0, WA, (15)
where
®(v, p)=vD(v, p) + 38w, p) ZHA W) + A~ ()], (16)
and
v)= (1/2mv)[M*(v) - M~(1)]. (am

(Note that $.(u) is Holder continuous on [~1,1].)

It has become customary to express formulas like
Eq. (15) in terms of so-called continum eigenvectors
multiplied by an expansion coefficient integrated on v.
[In fact, the columns of &(v, u) are exactly the continuum
eigenvectors of Ref. 4. ] Although the mathematical
justification of this custom is not exact, it is instructive
to note that the columns of the matrix & are indeed gen-
eralized eigenvectors of the operator K. By this we
mean that

Ko ()= f_i v (18)

v, w) A(w)dv, |v|<1

To prove Eqg. (18), we utilize the identity
@I-K)"'Kp(n) =2l - K)™" $(u) - d(u) (19)

(18) is carried out for
(19). An almost

Then the analysis leading to Eq.
Kf rather than f, using the rhs of Eq.
identical calculation leads to Eq. (18).

IV. CONCLUSION

As a result of the analysis of the previous sections,
we have established the following eigenfunction expan-
sion for ¥, which we state as a theorem.

Theovem 1. Let y 2 U. Then for a fixed x, ¢ can be
expanded as

d)(x,u):gl)

where ¢, , a;, ¢ and 4 are given by Eqs. (10), (11), (16),
and (17) respectwely Furthermore, the ¢, are eigen-
vectors of K and &(v, ) is a generalized elgenvector in
the sense of Eq. (19).

() ¢, (1 f B(v, p)A W) dv (20)

In an accompanying paper, the so-called half-range
problem in which an eigenfunction expansion of ¥ cor-
responding to the part of the spectrum containing ele-
ments z with re z = 0 will be considered. The ground
work for that paper has been laid by the present paper.

Also, the authors expect an extension of the domain
of Eq. (1) to a larger class of function spaces, namely
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X,={9ly,; differentiable in x € (- %, ©) and p; € L,[-1,1]
in g, p> 1, in a similar manner to Ref. 8 which ex-
tended the results of Ref, 6. The restriction of the
present paper to the smaller space U was made so that
equations like (14) could be written down.

Finally, in the authors’ opinion, the major benefit of
the above analysis, other than its mathematical rigor,
is the fact that the cumbersome calculations of the so-
called degenerate continuum eigenfunctions in various
regions of the branch cut (see Ref. 4) are avoided. Also,
the analysis is suitable for more generalized cases,
namely the anisotropic multigroup transport equation.
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APPENDIX A: REMARKS ON SOLUTIONS OF THE
MULTIGROUP TRANSPORT EQUATION

Larsen and Habetler ® have used the Case eigenfunc-
tion expansion to solve the transport equation by as-
serting that any solution which was “sufficiently smooth”
could be expanded, and its expansion coefficients related
to those of the source. The trouble with this approach is
that it requires, ex post facto, a verification that the
solution is indeed “sufficiently smooth.” Here we follow
a different approach, more in accord with Case’s
original work, of constructing a solution which satisfies
the boundary conditions, and then relying on a unique-
ness theorem to guarantee that there is no other solution.

Since, in the context of a full-range expansion, only
infinite medium problems are really relevant, we con-
sider the infinite medium Green’s function, that is we
seek solutions of the homogeneous equation

0 -
VK Y=0, (A1)
subject to the conditions
ll}m Plx, 1) =0, (A2)
o).
tm v, ) - 96, u)b= = = (), (A3)

€>0

where @, is assumed H6lder continuous. (@ is the source
strength vector.)

Let us expand (i) according to Theorem 1, re-
written for convenience in the following form:

%(“):i)?f ai¢ui(u)+Z_)ak¢-v (w) (Ad)
1
+ g d(v, u)Alv)dv + f o{v, L}AW)dy
Then we make the following
Assertion: The solution of Eqs. (Al), (A2), and (A3)
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is given by

86, 1) = 23 @, expl- /v,) 90, (0) + [ 60, )

Xexp(-x/v)A(w)dy, x>0, (A5a)
== 2 ay exple/ve) ., (1) - [ 90, )
Xexp(-x/V)A(w)dy, x<0. (A5b)

Justification of Assertion: The assertion can be proved
rigorously by developing a full functional calculus for K,
as has been done® for the one-speed case. This could
easily be carried out, but requires some detailed esti-
mates which have not yet been made. A simpler proce-
dure involves rewriting the transport equation in the
form

(K%) (x, ) +9lr, p)=0.

(A6)
This is justified so long as uazp/ax is Holder continuous
in u for every x. (Even this is not really required since
K is a bounded operator which could, by continuity, be
extended to a complete function space, say L,[-1,1].)
Then from Egs. (8) and (19) we observe that (x, 1)
obeys the transport equation, and the boundary conditions
(A2) and (A3) and is, hence, the unique solution. !’

For the one speed problem, uniqueness is well
known. !® For the energy dependent transport equation,
a number of uniqueness theorems have been shown, 131
and the multigroup case considered here can, with a
little effort, be shown to be a special case of some of
these treated there. However, we note that uniqueness
for the one-dimensional case is more or less trivial; we
sketch the proof because the argument involves the
calculation of the norm of an integral operator and the
same calculation is involved in a different way in the
construction of the half-range eigenfunction expansion
(accompanying paper).

It is well known [see Ref. 7, Sec. (3.6)] that the
one speed transport equation can be written as an in-
tegral equation by introducing the Green’s function. In
exactly the same way, the multigroup transport equa-
tion with source @ (which may be a distributed source
or a plane source as in the Green’s function problem)
is equivalent to an equation for the density p:

o) = [ Gllx-x"])pl")dx’ + Q) (A6a)
where
0 1 7
Q(x):/:” dx"/_; le-exP(_E“Lxl_x l/“.”) CQx’, 1),
(A6D)
with
G(|lx=x'|)=E(|x-x"|)o,;, (ATa)
and
EijEEl(oi]x—x'l)éij- (ATb)

E, being defined in Ref. 17, Appendix E.
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Now, a Fredholm equation like (A-6) is known to
possess a unique solution if the norm of its kernel G is
less than unity. In the next appendix we compute this
norm in an L, space and conclude that our solution given
by Egs. (A5) is indeed unique if the infinite medium
under consideration is subcritical. This is precisely the
condition at which one arrives in one-speed theory, i.e.
c<1,

APPENDIX B: CALCULATION OF IGl

We work with the Banach space
N
L=® L,
1
with norm

ufuzj_z:‘1 L 17 ax.

(We note the solution obtained in Appendix A is an
element of L,) The operator norm is

Gl = sup (IGAI/I7II.

It is trivial to show that the integral operator G, with
kernel G(lx—-x'1) is a map of L into itself, In particu-
lar, if A is a matrix of constants then

N
Al = sup 123 |4 =11 All,.

Now, if K is a matrix of operators, then each matrix
element K;; has an L; norm which is denoted by 1K ll;.
By writing the operator G=EC = (EZ)(Z~'C) we conclude
that (E and © are diagonal)

liGli < IE=I| - Izl

< SElpliEi;Eiill < IZ7Cll e
3

To compute ||EZ||, we may use Kato’s criterion

which, for a difference kernel reduce to
IE;Zyll < sup [ 0,E((0;|x—x"|)dx'=2.
x

Thus,
IGIl < 2IZ71Clly,

and the solution obtained in Appendix A will be unique if
2lz7cl,, < 1.

This result is exactly one of those derived by Bowden'®
as the subcriticality condition for an infinite medium.

We shall find that this norm result plays a crucial
role in the half-space problem discussed in the ac-
companying paper. We point out that for half-space
problems, the range of integration is (0, «) rather than
(= =, ), However, the norm calculated is identical
[evaluated with the limits (0, «)].
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This paper accompanies a preceding one in which a functional analytic method was used to obtain the full-
range expansion in multigoup neutron transport. In the present paper the analysis is extended to obtain the
half-range expansion. The method used is an extension of the work of Larsen and Habetler for the one-
group case. The results are given in terms of certain matrices which are solutions of coupled integral

equations and which factor the dispersion matrix.

I. INTRODUCTION

In an accompanying paper,’ hereafter referred as I,
the full range eigenfunction expansion for the solution of
a multigroup neutron transport equation is obtained
from application of the resolvent operator technique of
Larsen and Habetler.? We refer the reader to the in-
troduction of I, in which we point out some of the ad-
vantages of the Larsen—Habetler technique over the
usual Case orthogonal singular eigenmodes approach.?
These advantages include mathematical rigor and sim-
plified notation. But the major advantage is the subject
of the present paper, namely that the technique can be
applied just as easily to obtain the so-called half range
eigenfunction expansion., Except for some special
cases,® existence of the half range expansion, let
alone explicit formulas, has never been demonstrated,
due to a technicality in determining so called “partial
indices.””® (The only exception is a paper by Pahor and
Suhadolc” whose ideas have some similarity to ours,
but whose arguments are still based on the original
Case approach. Like them, we are restricted by the
condition 1Z"1Cil < 3, which has been shown to be a con-
dition that the infinite medium be subcritical. )

We should point out another major advantage of the
present technique, namely its suitability to generaliza-
tion. For example, the anisotropic case could be treated
almost as easily as the isotropic case considered here.
It is necessary in the analysis to write the transport
equation in the form of an integral equation which, while
tedious in high order anisotropy, is nonetheless feasi-
ble. Also, the condition on 1 Z*CIl could be relaxed if
the sufficient condition of Gohberg and Krein® for the
convergence of Neumann series solutions to certain in-
tegral equations could be improved. (Our analysis is
heavily based on a factorization theorem of T.W. Mul-
1ikin!® which is, in turn, based on the work of Ref. 9.}

In the present paper we use the Larsen—Habetler
technique and the results of the Mullikin theorem to
obtain an explicit representation of the half-range ex-
pansion; the partial index question never arises. An
outline of our presentation is as follows:

In Sec. III we find a projection operator E such that
(zI - KY'Ey is analytic for Rez <0, where i belongs to
a certain function space and (z/ — K)-! is the resolvent
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operator considered in I. It turns out that this operator
contains certain noncanonical matrices X and ¥ which
factor the dispersion matrix. Then, in Sec. III we ob-
tain explicitly the half range eigenfunction expansion
which can, in turn, be used to solve half-space trans-
port problems in the usual way. The X and Y matrices
are given in terms of the solutions of nonlinear, non-
singular integral equations, and they may be obtained
numerically. This, in turn, will make it possible to
obtain numerical solutions from the results of the
present paper.

Appendix A is devoted to the conversion of the Mul-
likin results to the form which can be used in the
present paper. In Appendix B a uniqueness theorem is
proved for the matrices X and Y. Appendix C contains
a solution to a half-space transport problem.

Il. THE PROJECTION OPERATOR £

We consider the function space U’ of N-dimension-
al column vectors ¢ defined as

U’ ={¢}| uy; is differentiable in x € (- «, ) and H5lder
continuous in u € [0,1]}-

The operator K defined by Eq. 4 of I is a bounded opera-

tor on the function space U defined in I. We closeély

follow the procedure of Ref, 2 and look for a projection
operator E: U’ —~ U with the two properties:

M Eyp(w)=uv(p), 0<ps=<l, (1)
and
(I1) (2I - K)"*Ey(u) is analytic in z for Rez <0,

where we use the notation defined in 1 to write for f
elU,

(2] = KY'A) = Dz, W Aw) +A'1(z)f_isD(z,s)f(s)ds]. (2)

(As in I, the x~dependence will be suppressed. ) The
idea of introducing the operator E is that the identity

()= Ey(u) = (1/2m) P (2] - K)'Ep)dz, 0<p<1, (3)

where 7 is a contour encircling the spectrum of the
operator K, will reduce to the half range expansion of
¥ for 0< p <1 because of property (II) above.

Copyright © 1976 American Institute of Physics 82



Let us now consider y < U’ and write

(2I - K)Ey(p) = D(z, W[ Ey(u) + G(2)], (4)
where we have defined the column vector G(z) by
G(z)=A"(2) [ s Diz,5)Ey(s) ds. (5)

In order for (2] - K)"'Ep(u) to be analytic in z for Rez
<0, we require that:

(@) G (W) =G (w=G(u), ~1<u<0

(b) [G(W)],= = [Eylo;u)];,, —1<o,u<0, i=1,...,N,
and

(¢} G(-v,)<w, Rev,>0, i=1,...,n,

where we recall that detA(x v ,)=(xv,)=0, i

:1,. oy N

At this point, we introduce matrices X(z) and ¥(z)
which factor the dispersion matrix A(z) according to

Az) = Y(- 2)X(2), (6)
and which satisfy the following properties:

(i) X(z) and Y(z) are analytic in the complex z-plane
cut along [0,1],

(ii) detX(v,) =detY(v,) =

detY(-v,)#0 for Rev,> 0,

0 and detX(-»;)#0 and detY
i=1,2, .,n, and

(iii) lim,, .., X(2z) =constant, and lim, _, ¥(2)=
= constant,

The existence of the X(z) and Y(z) matrices with the
properties listed above can be shown from the results
of Mullikin. !° This is done in Appendix A.

Let us find another representation of G(z) by defining
the operator E and the column vector function F so that
the column vector function

Q)= [ sDiz,)EWs)ds - ¥(=2) [ (1/2-s)Fis)ds, (7)

is identically zero. Since @(z) vanishes as | z| = and
is analytic except perhaps for a cut along the interval
[-1,1], we need only to require that @(z) be continuous
across that interval. Thus, using the Plemelj formulas
and property (I) above, we find that @(z) is continuous
across [-1,1] if

F(u)=puY M- u)Z%Pp(u), Ospsl (8)

and

[Ey]i (0, = = [X7w) [ s = 5)* Y= )220 ds) ds),,
-1<0,u<0, (9)

where we have used Eq. (8) in Eq. (9) and we have de-
fined the column matrix p(u) such that

(b)), = {;b,(oiu),

o, otherwise,

Oso,ust,

Combining Egs. (5), (7),
G(z) to be given by

(8), and (9), we determine

G(Z)ZX'I(Z)fols(z - s) Y (- 8)2%y(s) ds. (10

Note that G(z) given by Eq. (10) satisfies requirements
(a), (b) and (c) listed above. Therefore our desired
projection operator E is defined by Eqs. (1) and (9).
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Note Eq. (9) that Ey(u) is Holder continuous for p<0
(recalling that X is analytic). Thus we verify that E
maps into U, in particular, we are justified in applying
the full range expansion of I to Ei.

11l. HALF RANGE EXPANSION

We now can combine Egs. (3), (4) and (10) to obtain
the half range expansion in the form

W) =2 be + U,

where
¥r, (p)=
and

w) = (1/2m) gir D(z,s) Ey(u)+ G(2)]dz

Each contour T, consists of a small circle centered
about v;, and the contour T encircles the interval (0,1).
Applying the residue theorem, we can calculate §r, to
be

1/2772)¢ D(z,8)E¢(u)+ G(2)]dz,
T

or, (W =[2@)I"'D(v,, wdet¥(v))]
XX (v )f sy, — )Y s)Z%yy(s) ds, (11)
where X (v,) is the transpose of the cofactor of X(v,).

Noting that each column of X (v,) is proportional to
the eigenvector 3(v,) of A(v,), as defined by Eq. (I-9)
we can write

[dety(v )X, (v)],,.= alB,(v,),

where a/, is a constant. With the above definitions, we
can express Eq. (11) as

ll)ri(M)Zaﬁdi,,i(H), (12)
where

N
a=[2 W) 2 o[ [, = sV V= 5)Z4(s)ds],,, (13)

and ¢, (u) is the discrete eigenvector given in Eq.
(I- 10)

To find y., we apply the same integration technique
to the contour I' as was done in I, and we get

Yru f ®(v, WA (v)dv, (14)
where
oy GW -6
A'(v)= 270 , Osv=l, (15)

and (v, u) is given by Eq. (I-16). Finally, we com-
bine Eqs. (12) and (14) to write the half range
expansion for yeU’, O0s u<1 as

W) Eaicp +f &(v, wA’(v)av,

where ¢, ,

v,u), aj and A'(v) are given by Eqs. (I-
10), (I- 13)

13) and (15), respectively.

The expansion coefficients are given in terms of the
matrices X(z) and Y(z). By rearranging the results of
Mullikin, !° we show in Appendix A that X(z) and ¥(z)
satisfy the functional equations
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Yyios)

ClT+ ==
2 mo) sls=2)

X(z)=C [A*(s) - A(s)]ds, (16)

and

Moo A (A =0)

27 A s(s - 2) (amn

XY(-s)ds.
If z is restricted to the interval [-1,0], these functional
equations reduce to nonlinear, nonsingular coupled
matrix integral equations for ¥(- u) and X(~ u), 0= g
<1. Using the results of Mullikin,'® we show in Appendix
A that a solution of this last set of equations exists if
I1Z7CI < 3. This is, of course, a sufficient condition

and not a necessary condition. Furthermore, we show
that any pair of matrices X(z) and ¥(z) which satisfy

the factorization to within a trivial factor, is unique
(Mullikin has shown existence of at least one solution).
Thus, one may proceed with confidence to evaluate X
and ¥ numerically from Eqgs. (16) and (17).

It is important to understand the difference between
the present method and the “Case-type” approach. In
the latter, one obtains the half range eigenfunction ex-
pansion as the solution of a singular integral equation
on the line [0,1], and requires a matrix L' analytic in
the complex plane cut along [0,1] such that (L-)"'L*
=(A")IA*. The existence of such a matrix has been
proved!! but its behavior at infinity (the so-called “par-
tial indices”) is crucial to the proof of completeness,
i.e., the proof that the singular integral equation for
the expansion coefficient possesses a unique solution.
Unfortunately, in many cases the calculation of the
partial indices is impossible. In the approach taken here
here, where we deal with the complex plane as a whole,
the factorization as described by Eq. (6) is relevant,
and the behavior at infinity is known, The poles of X
and Y™! at the discrete eigenvalues presented no prob-
lem as was seen.

The major advantage of the approach used here is that
numerical methods may be applied to Egs. (16) and (17)
and thus the expansion coefficients may be numerically
evaluated. Using the canonical approach, it seems that
at best existence can be proved, since no explicit solu-
tions of the canonical problems are known. (See,
however, Ref. 7.)
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APPENDIX A: SOME PROPERTIES OF X AND Y
MATRICES

T.W. Mullikin'® has shown that if K_is an NXN
matrix operator

K 0= [ k(x,y) Ay)dy,

on vector functions f with norm
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N
IA=2 [ 1wl ax,
and if IIK [f<1, then there exists a Weiner —Hopf
factorization
(1~ k(2)]H,(2)H (- 2)

where H,(z) and H,(z) are matrices, analytic for Imz
>0, and contmuous and non- s1ngular in Imz= 0. Here,
k is the Fourier transform of %,

=] for Imz=0,

= [ k(x) exp(—izx) dx.
Mullikin also showed that H, and H, satisfy

HNz)=1+(1/2m) [~ H,WOk(- )+ 20" di, Imz>o0,
(A1)

and

H'2)=1+(1/2m) [ R(OH, () +2)7dt, Tmz>0.  (A2)

We can analytically extend the matrices H,(z) and
H,(z) to the lower half of the z plane by defining

H*(z)— {H,{ZA), Imz=0, (A3)
[I-k(2)]HY (- 2), Imz<0,
and
H,(z) Imz=0
@ { - 2)[-2(2)]"" Imz<0, (44)

Now, H,(z) is analytic for Imz >0 and [I-k(2)][H,(- 2)]"
is analytic for Imz < 0 except for a branch cut along
|~i,~i%), due to |[I-k(z)]™ and poles at the zeros

of det[I~ k(z)] Since H,(2)=[I-k(2)] [H (- 2],

Imz=0, H*(z) is analyt1c everywhere in the complex
plane except for the cut along {~4, ~i~), and poles

at the zeros of det[I—%(z)] in the lower half-plane.

Similar arguments follow for the matrix H(z). Using
Egs. (A3) and (A4), one may easily show by direct sub-
stitution that

1= (2)H(- 2)=1, (A5)

is valid for all z.

To link Mullikin’s results to the X and ¥ matrices
used in this paper, we note that the multigroup trans-
port equation with source ¢ in half-space problems may
be reduced to an equation for the density p (cf. Eq.
I-AT),

plx)= f: k(| x —x' Do) dx’ + Qx)

where
k(lx-x'|)=E,(Z|x-x'|)C,
with
(E(Z|x =% ]]; =6 (1/u)exp o |x - |/ uldu.

Let us call K, the operator with kernel 2. Using this
particular k2, we calculate % and find that it is related
to the dispersion matrix A by the relationship

AMz)= [T -k(-i/2)]C'S (A6)
From Eqgs. (A5) and (A6) we obtain
Az) =Z[HG/ ) H* (- i/ 2)]'CE. (AT
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FIG. 1. The contour 7 used for relating k(w) and A(z).

If we now define
X(2)=[H*(-i/2)]'CZ,

and

(A8)

Y(z)=Z[H(-i/2)]?, (A9)

we get Eq. (6). We recall from I that kil <1 if 1Z-*Ci
<3,

To determine Eqs. (16) and (17) for the X and ¥
matrices, we consider the contour 7 given in Fig. 1
and note that the integrands in Eqs. (Al) and (A2) are
analytic inside 7 and have a branch cut (4,4 ) due to
%. Since £ vanishes as |zl — =, we can write the

integral in Eq. (A1) as
1 R
llgl}’): Py H,(t )k( t)t—_;;
-R
i .
~lim J' PABLALLILEE
R | Jir w+z
iR -~
+J’ H () =@ 4, (A10)
f w+ 2
Using Eq. (A10), we can write Eq. (Al) as
H(-i/2)
1 .
_re 2 [ BT ey i/ 6)]ds (a11)

zmi J, s{s+2)

We calculate &' (i/s) - k~(i/s), 0<s <
and substitute into Eq. (Al1l) to get

1 from Eq. (A6)

=i/ D=1+ 55 I A HLS) 3 (s) - A-(s)]IC.
(A12)

Identifying X(z) and Y(z) from Eqs. (A8) and (A9), we
get Eq. (16). A similar analysis on Eq. (A2) yields Eq.
(17).
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APPENDIX B: UNIQUENESS OF THE X AND Y
MATRICES

The factorization of A, Eq. (16) [along with conditions
(i)—(iii)] is unique up to right multiplication of Y by a
constant invertible matrix R and left multiplication of X
by R™. [From Eq. (9) we observe that such a trans-
formation does not affect E, and hence leaves the solu-
tion of the transport equation unchanged. ) In addition,
solutions of the nonlinear equations, (16) and (17) always
factor A. Furthermore, these equations “normalize”

X and Y. To be quite specific, we state these results
as lemmas.

Lemma 1: Any pair of matrices X and ¥ which satisfy
Egs. (16) and (17) provide a factorization Eq. (6) of A.

Remark: Only the converse of this has been proved
by Mullikin.

Pyoof: Eqs. (16) and (17) may ke combined to give
c- [A*(s) -~ A" (s)]
[¥(-2) - Z][X(2) 12]’(21”)2 f _f s+z)
1 AT () - A(1)]
X X -s) = 2) dsdt. (B1)

If the right hand side of (B1) is expanded by a partial
fraction decomposition and common terms are
cancelled, we obtain

Y(- 2)X(z)=ZC1Z + (2/ z7i)

Xfi [A*(s) - A™(s)/s(s - 2)]ds=A(2),  (B2)
proving the lemma. (The definition of A, Eq. (I-5), has
been utilized.)

Lemma 2: Let X(z) and ¥Y(z) satisfy Eqs. (16) and (17)
plus the conditions (i)—(iii) following Eq. (6). Let X’(z)

and Y’(z) satisfy the same equations and the same
conditions. Then

X(z)=X"(2) and ¥(z2)=7Y"(2)

Remark: In a sense, this result is unimportant, since
we already know that a factorization can be computed
from (16) and (17) and, unique or not, it will provide a
solution to the transport equation. However, it is in-
teresting to note the constraints on the solutions do not
require more than verifying conditions (i)—(iii) men-
tioned above.

Pyoof: The matrices
D, (2)=[¥"(2)]"'¥(2) and D,(z) = X(2)[ X’ (2)]"*

are analytic everywhere in the complex plane except
perhaps for a cut along (0,1) and poles at {+ v}, i=1,
«++, n. Also, because X, Y and X’, Y’ both satisfy (10)

and (17),

lim D,(z)= lim D,(z)=1.

lzl-w ! lz |- (B3)
Now calculate
Dy(- 2)D,(2) =Y (- )] V(- 2)X(2)[ X" ()] =1, (B4)
where Lemma 1 has been invoked. Similarly,

D, (2)Dy(-z)=1. (B5)
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These equations are valid for all z. Since D,(z) is
analytic in the left half plane, it follows from Eq. (B4),
that D (- z) is also analytic in the left half plane, i.e,
that D,(z) is analytic in the right half plane. Similarly,
from (B5) we conclude that D, is analytic in the right
half plane. Thus, D, and D, are analytic everywhere
and approach I at infinity. Hence,

DI(Z) = DZ(Z) =7
or

(v

/

(D] ¥(2)=1 and X(2)[ X" (2)]" = 1.

Similarly, by redefining D, and D,, we can show
V([ V()] =1and [X" ()] X(2)=1.

So

X(2)=X"(z) and Y(z)=Y"(z).

APPENDIX C: SOLUTION OF HALF-SPACE
TRANSPORT PROBLEMS

The solution of half space problems is similar to the
infinite medium case considered in I. Consider the
Albedo problem. That is, we seek solutions of the
transport equation in the source free half space subject
to

P, )~ 0 as |x| e, (c1)
and
P, )= Pol1e), (Cc2)

where ¢, represents the incident distribution. As in I,
we expand ¥,, in a “half-range expansion”

w>0,

(=2, (% [ 60, A0 v ©3)
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Then
n

x, 1) = Z:/ ayexpl~x/v,@, (u)+
= 1

+ M@ (v, u)exp(- v/ VA (V) dv. (C4)
0
Equation (C4) is the (unigue) solution because, as in

1, it satisfied the transport equation and obeys the

boundary conditions (C1) and (C2).
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An upper bound on the energy gap in the (1¢*+4?), model
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Let A E(h, 0, m;) be the energy gap in the infinite volume quantum field theory with bare mass m, and
interaction A¢*+od? in two space-time dimensions, obtained with either full-Dirichlet or half-Dirichlet
boundary conditions. Then A E(A\,07, mg)/ mg < exp[o/(m3 +3A/ID)] for all A>0 and o real. In particular
AE(A0, my) < my for all A>0 and A E(A, 0, mp)/ my—0 as o—— . For half-Dirichlet boundary conditions one
also has A E(\, 0, mg)/ my < (1+20/m¥)"? for ¢ >0,A>0. In each pure phase of a (A$*), theory, let my,, be the
energy gap and <4 the expectation of the field. Then my,./ my < exp[2IIKd>*/(1+T1m §/3M)].

1. INTRODUCTION

Let AE(), 0, m) be the energy gap between the ground
state and first excited state for the infinite volume field
theory in two space—time dimensions with interaction
x¢t+ o¢? and bare mass m,. According to the Goldstone
picture (see, e.g., Ref. 1a) one considers the “poten-
tial” part of the Lagrangian

V() =2re* +0¢* +imig®.

For ¢>-m%/2, V(¢) has the form shown in Fig. la,
whereas for o< —m5/2 it has the form in Fig. 1b.

The simplest version of the Goldstone picture would
then say that for o>— m%/2 there is a unique ground
state, while for 0 <— m%/2 there is a doubly degenerate
ground siate. This picture is certainly too simple since
it ignores Wick ordering.?® In fact Figs. la and 1b are
in some sense equivalent since the theory with param-
eters (X, 0, m,) is equivalent to the theory (A, 0, m,) if%®

J V(@)

FIG. 1.
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_ Mg -y +3_)‘ mg

However, one does expect the following to occur (e.g.,
Ref. 4): Holding the bare mass m, and the coupling con-
stant X fixed, AE should be strictly positive for large

o, and AE should monotonically decrease until at a cri-
tical value o= g, the gap AE becomes zero and the
ground state degenerate. For values of o< g, the ground
state remains degenerate and so AE=0 (see Fig. 2).

Guerra, Rosen, and Simon® have shown the monotoni-
city of AE with o and Glimm, Jaffe, and Spencer' have
proved that for large positive o (fixed m, and ) the
ground state is unique and AE > 0. One would like to
show o, > -, i.e., there exists a finite o, such that
AE=0 for o< 0,. (Dobrushin and Minlos® have announced
a result of this type, but no details have appeared.)
There have been no results for large coupling (o —~— =);
in particular, no estimates on how fast AE falls off as

V(@)
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FIG. 2, Expected dependence of AF on ¢ for fixed bare mass
m, and coupling constant A,

o decreases or even if it goes to zero as g~ - =,

In this paper we obtain a bound on AFE valid for all
A>0, oreal and m;>0, and show that AE decreases
exponentially to zero as o0~ - . The precise result is

Theovem 1: Let AE(A, o, m,) be the energy gap for the
infinite volume limit (A¢* + 0¢?), theory with bare mass
myg, obtained with either half- or full-Dirichlet boundary
conditions. Then

® AE(X, g, )
my

o
< <
exp mro VT for all 2 >0 and

o real.

In particular, AE(X, 0, m) <m for all x>0 and
AE(X, g, mg)/my—0as g~— .,

(ii) In the case of half~Dirichlet boundary conditions
one also has

AE(M
i(%’mo—)<\/ 1+20/m% forallr>0and 0=0. O
g

This theorem gives the following picture for the upper
bound on AE (Fig. 3). This supports the conventional
picture (compare Figs. 2 and 3).

In comparing our result AE <m, for (x¢%), with those
results previously obtained, we note that Guerra, Rosen,
and Simon® have proved that AE < m, for sufficiently
small x (using perturbation theory). They have also
shown that for fixed A, AE is monotone increasing in
the bare mass . It follows by a dimensional argument
that AE/X'/? i monotone decreasing in A (which does
not imply AE <3ny). If on the other hand, if one knew
that AE/m, is monotone increasing in m,, it would fol-
low that AE is monotone decreasing in A. Another re-
lated result, due to Glimm and Jaffe® is the estimate’

d
%AE(A’ o,m<2 for o> dq,.

If in addition one assumes the existence of a critical

88 J. Math. Phys., Vol. 17, No. 1, January 1976

point such that AE(}, 0, m,) =0, it follows that

3, mi\1/2
AE(X 0, mg) < <m%- mé +——ln——g°>
I mg

(which does not imply AE < m,).

We prove Theorem 1 in Sec. 4. The key ingredients
are the existence® of the infinite volume limit for
(:¢(x)?:) together with a lower bound on {: ¢(x)2:) (Sec.
2). Here and throughout the paper we denote by (), a
finite volume full- or half-Dirichlet expectation, and
() =limpp2()s. We will deal exclusively with full and
half-Dirichlet states even if not always explicitly
mentioned.

Heuristically the estimate AE <m, for \¢* follows
from the fact that {: ¢(x)%:)= 0 (Ref. 9) and that the in-
finite volume limit two point function S(x ~ ¥) has the
form

Jy= dp(m)S(x - 9)

where S,{x —¥) is the two point function of a free field
with mass m. From the canonical commutation rela-
tions!! [,"dp(m)=1 and so

0<(:¢(0°) = lim [S(x) = S pyx)]
=1lim [ dp(m)[S,(x) - S,, (x)]
x~0

implies that there must be a contribution to S(x) coming
from masses m < m, [since S,(x) <Sp (%) if m >my]. We
make this argument rigorous in Secs. 4 and 6.

Notice that we are using a small distance limiting pro-
cedure lim,,_, .o(: ¢(x)@(p) ) rather than the more usual
large distance behavior lim,,_, . ¢ (¥)¢(¥)) to obtain in-
formation on the energy gap.

The technical complication which arises with this ap-
proach is the identification of {: ¢(x)?:) with the limit
lim,_(: ¢(x)¢(y) ;). One may formulate the problem as
follows: Let ¢, denote the field ¢ with a momentum cut-
off. Is it true that

upper bound

FIG. 3. Upper bound on AE for half-Dirichlet boundary
conditions.
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FIG. 4. Expected dependence of my,, on A for fixed bare mass
my.

lim hm (: 2 )A—hm hm( $ZH, ?
-6 A4RZ AfR2

It is interesting that we will not need to show the equal-

ity; it will suffice to show

limlim (:@2:),> 11m l1m< SN
g-6 A4R2 AfR2

(see Sec. 3).

We use the integration by parts technique to obtain
some information relating the mass gap #i,,s and ex-
pectation {¢) in each pure theory (corresponding to a
decomposition into non-degenerate ground states) of
(ré*),. According to the conventional picture AE de-
creases to zero as X increases to A, (holding m fixed
and ¢=0). For A>2,, AE=0, If, however, we consider
the physical theory corresponding to each pure theory
it is expected that AE#0. If m,,, denotes the energy
gap between the ground state and first excited state in
each “pure phase” then m,,,,=AE if A<, K A>2,,
AE =0 but my,, >0 (see Fig. 4).1°

If the (x¢?), theory has the expected particle inter-
pretation, . would be the smallest particle mass.
Nothing is known about m,,,, for A>2,. We obtain an in-
equality relating ., and {(¢). More precisely, we con-
sider first the interaction A¢* - u¢ with x> 0. Then it
is known that the ground state is unique.!? Let AE, be
the energy gap and {¢), the expectation of ¢.

Definition:
Mygs=1mAE,, {(¢),=1lim{(e),.
©i0 ui0

Remark 1: These limits exist since both AE, and {(¢),
are nonnegative and monotone decreasing as g 0. (¢),
decreases by the Griffiths’ inequalities and AE, de-
creases by the GHS inequalities (see Ref. 13, Theorem
IX. 9). The following theorem is proven in Sec. 5.

Theovem 2:

AE 21K ), 2 )
—_—t =
my P (1 F Tm3/3x
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and, consequently,

ﬂp_hﬂ<exp< 2I¢) 2 )
my

T+ 0mi/31 /) =

Remark 2: Note that in contrast to the result AE/m,
<1 (for 1 =0, 0=0) we see that it is possible for Mopys/
my to be > 1 provided (¢}, is sufficiently large,

2. APPLICATIONS OF THE INTEGRATION BY
PARTS FORMULA

Consider a theory with interaction P(¢) in a finite
volume A in the lattice approximation. 2 An expectation
O A5 1s obtained by integrating with respect to the
measure

TIexp( 2.6%: P(q) ) exp( kEqu(S'l)k;q;>

where 7 is a normalization constant, & is the lattice
spacing, and S,, is the covariance {¢,9,,4, for the case
P=0. The variable g, = ¢4(kd) is the lattice field at the
site 26 and the sums over 2 and ! are finite sums such
that 26, I6c A,

The integration by parts formula'®

fq,F(q expl~3229,(SM)wa: 1dq
anf eXp[— 322G,(S" )szh]dq

yields

(q't>A,6:<-Zj;()zSii :P'(q,-) Dase 2
Applying the integration by parts formula twice gives
<q1"1j - Sij)A,G +Z’:/523iksjk<3 P"(qk) a6

:<(Zk;625ik :P'(qk) )(Zt/ 525“ :P'(q,) : ))A,O- (3)

Equations (2) and (3) may be applied to several situa-
tions. Consider a (A¢* + 0¢? - ug), infinite volume the-
ory. The infinite volume limit of'* (: ¢2: (f)), exists
(Ref. 9 or Sec. 7) and so by translation invariance
{:¢(x)? ) is a finite number y={: $(0)%:). We prove a
lower bound on {: ¢(x)?:) which extends the positivity of
¢ o(x)?:) for (AoY), of Klein— Landau. ®

Lemma 1: In a (A¢* + 0¢% — uo), infinite volume limit

theory with either half- or full-Dirichlet boundary
conditions

1 g
oW%)> - 35 wrT e .

Pyoof®: Putting i =7 in Eq. (3) gives
O Sida,e +§62‘S%k<:P”(qk) D4
=((2 58 : P'(qy) 9as=0
k

With P(¢) = A¢* + 09 - ug,
@5=Sioa, s+127\2525m2< A I +2023625n, > 0.

Taking the limit 6 —~0 and then A f R? gives (see Ref. 9)
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()2 = = 2OSAySn(x — y)*
GO =17 12)\fd2y§m0(x—y)2

where translation invariance has been used.

As

2 1 & 1
fdemO(x v g f(p2+m0)z-4ﬂmﬁ

the lemma is proved. L

Consider now the interaction P(¢) =x¢% - ue.

Lemma 2: Let g be a real smooth function of compact
support (g [)), #p)= [dP*cg(x) exp(ip -x). Ina (\¢*
— u¢), infinite volume limit theory with either half- or
full-Dirichlet boundary conditions

Go@* +3 [ o ( 0(0

EH=HoXe(0):. O

Pyoof: Formula (2) gives

25 8%8(n8)g a6 = — 20 6%8(n0) 25 8%8,,, (4N 1 g% 1 = W)a
and formula (3) gives

27827 6%g(n0)g(m6)q,qm— Sumda, s

+1202, 6225627 0%g(n0) g(md)S S (i 4F ) a s
m k

n

=202 2. 6%8(n0)S, 4N : 3, = ]ty s g
Using (F® > (F)? and taking the limits 6—~0, A A/R? gives
Co@?y+ IZAfdzxdzydzzg(x)g(y)

X8 - 2)S(y - 2) : p(0)2 ) fdzxg(x Xo (002

Performing the integrations completes the proof. [

As a final application of the integration by parts for-
mula we obtain a bound on {: ¢(g)?

Lemma 3: Let 0<gec/). Ina (\p*+ 0%~ 1e), infinite
volume limit theory with either half- or full-Dirichlet
boundary conditions

N 3\ Y
o925 | < 30)* [(1+m><:¢<°)2=>+znmg]

+2_;2f_2_2_z—‘(ipp‘+g(p |60(: 3(0)2:) + .

In particular, 1¢:¢{g)?:)! remains bounded as g—~06. O
Pyoof: Formula (3) gives
(@45 =Siap +2206%5uSi[12X: g8 Hp st 20 =F;; (4
k

where
:(@ 828 l4N:qd : +20q, -

I-‘LD>A,5'

According to the Schwarz equality | F;;|<
which implies

| 2072, 6%(0)gGO)F

u])(ZZ 8%, [4r: g}

+ 209, -
Fl/2pi/z
11 17

gl <2 0%(0)2 B2gi6)Fyy.  (5)
J i
Now Eq. (4) with i =j leads to
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Zé 2(i0)Fy; =2, 0°%g(E0)(qE = Sida 0
i

+2, 820 6%g(:6)S%,[120(: ¢2 Dae +20].
A
(6)

Multiply Eq. (4) by 6%g(i6)8%g(j6) and sum on ¢ and j.
Using Eq. (6) and inequality (5), and taking limits - 0,
A AR? gives

dplgp)|

|{: ¢(g)? >+